OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8200–8207

Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8200-8207 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple refractive index sensor based on a step-index fiber with a hollow micro-channel running parallel to its core. This channel becomes waveguiding when filled with a liquid of index greater than silica, causing sharp dips to appear in the transmission spectrum at wavelengths where the glass-core mode phase-matches to a mode of the liquid-core. The sensitivity of the dip-wavelengths to changes in liquid refractive index is quantified and the results used to study the dynamic flow characteristics of fluids in narrow channels. Potential applications of this fiber microstructure include measuring the optical properties of liquids, refractive index sensing, biophotonics and studies of fluid dynamics on the nanoscale.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: January 18, 2011
Revised Manuscript: April 3, 2011
Manuscript Accepted: April 7, 2011
Published: April 14, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St.J. Russell, "Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel," Opt. Express 19, 8200-8207 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  3. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  4. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46(22), 5456–5460 (2007). [CrossRef] [PubMed]
  5. L. Ma, T. Katagiri, and Y. Matsuura, “Surface-plasmon resonance sensor using silica-core Bragg fiber,” Opt. Lett. 34(7), 1069–1071 (2009). [CrossRef] [PubMed]
  6. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008). [CrossRef]
  7. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009). [CrossRef]
  8. J. Jágerská, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35(15), 2523–2525 (2010). [CrossRef] [PubMed]
  9. H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007). [CrossRef]
  10. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007). [CrossRef] [PubMed]
  11. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  12. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  13. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009). [CrossRef] [PubMed]
  14. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007). [CrossRef] [PubMed]
  15. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008). [CrossRef] [PubMed]
  16. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  17. T. Han, Y. G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 35(12), 2061–2063 (2010). [CrossRef] [PubMed]
  18. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 6th edition, 2006).
  19. A. W. Snyder, and J. Love, Optical Waveguide Theory (Springer, 1st edition, 1983).
  20. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010). [CrossRef] [PubMed]
  21. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  22. J. Kirchhof, S. Unger, B. Knappe, and J. Dellith, “Diffusion in binary GeO2–SiO2 glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 129–133 (2007).
  23. K. Shiraishi, Y. Aizawa, and S. Kawakawi, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990). [CrossRef]
  24. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921). [CrossRef]
  25. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, ““High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst Solid. 356, 1829–1836 (2010). [CrossRef]
  26. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. B 7, L13–L20 (2005).
  27. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited