OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8218–8232

Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation

Marco Centini, Alessio Benedetti, Concita Sibilia, and Mario Bertolotti  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8218-8232 (2011)
http://dx.doi.org/10.1364/OE.19.008218


View Full Text Article

Enhanced HTML    Acrobat PDF (1604 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 7, 2011
Revised Manuscript: March 13, 2011
Manuscript Accepted: March 14, 2011
Published: April 14, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Marco Centini, Alessio Benedetti, Concita Sibilia, and Mario Bertolotti, "Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation," Opt. Express 19, 8218-8232 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005). [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007). [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  6. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005). [CrossRef] [PubMed]
  7. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  8. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef]
  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009). [CrossRef] [PubMed]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Single-molecule fluorescence enhancements produced by a Bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  14. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010). [CrossRef]
  15. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010). [CrossRef] [PubMed]
  16. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010). [CrossRef] [PubMed]
  17. W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tunable optical properties,” Phys. Rev. B 76(11), 115411 (2007). [CrossRef]
  18. A. Nevet, N. Berkovitch, A. Hayat, P. Ginzburg, S. Ginzach, O. Sorias, and M. Orenstein, “Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors,” Nano Lett. 10(5), 1848–1852 (2010). [CrossRef] [PubMed]
  19. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006). [CrossRef]
  20. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  21. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. E. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010). [CrossRef] [PubMed]
  22. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  23. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays,” Opt. Express 17(5), 3603–3609 (2009). [CrossRef] [PubMed]
  24. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005). [CrossRef]
  25. Optical Properties of Nanostructured Random Media by V.M. Shalaev Ed., (Springer, 2002).
  26. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130(21), 214710 (2009). [CrossRef] [PubMed]
  27. B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004). [CrossRef] [PubMed]
  28. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003). [CrossRef] [PubMed]
  29. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009). [CrossRef]
  30. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). [CrossRef] [PubMed]
  31. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92(9), 093119 (2008). [CrossRef]
  32. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21(1), 36–44 (2004). [CrossRef]
  33. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27(3), 408–416 (2010). [CrossRef]
  34. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). [CrossRef]
  35. C. G. Biris and N. C. Panoiu, “Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires,” Phys. Rev. B 81(19), 195102 (2010). [CrossRef]
  36. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009). [CrossRef]
  37. W. L. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B 78(19), 195416 (2008). [CrossRef]
  38. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010). [CrossRef]
  39. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry,” Phys. Rev. 174(3), 813–822 (1968). [CrossRef]
  40. J. E. Sipe and G. I. Stegeman, in Surface Polaritons, V M. Agranovich and D. L. Mills, eds. (North-Holland, 1982)
  41. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum, 1997). chap 5.
  42. T. F. Heinz, in Nonlinear Surface Electromagnetic Phenomena, edited by H. Ponath and G. Stegeman (Elsevier, 1991), p. 353.
  43. J. C. Quail and H. J. Simon, “Second-harmonic generation from silver and aluminum films in total internal reflection,” Phys. Rev. B Condens. Matter 31(8), 4900–4905 (1985). [CrossRef] [PubMed]
  44. G. A. Farias and A. A. Maradudin, “Second harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984). [CrossRef]
  45. R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28(4), 1870–1885 (1983). [CrossRef]
  46. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999). [CrossRef]
  47. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004). [CrossRef]
  48. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  49. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,” J. Opt. Soc. Am. A 18(4), 854–861 (2001). [CrossRef]
  50. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009). [CrossRef] [PubMed]
  51. E. Centeno, “Second-harmonic superprism effect in photonic crystals,” Opt. Lett. 30(9), 1054–1056 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited