OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8233–8241

Triple-layer guided-mode resonance Brewster filter consisting of a homogenous layer and coupled gratings with equal refractive index

Xin Liu, Shuqi Chen, Weiping Zang, and Jianguo Tian  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8233-8241 (2011)
http://dx.doi.org/10.1364/OE.19.008233


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A triple-layer guided-mode resonance Brewster filter consisting of a homogeneous layer and two identical gratings with their refractive indices equal to that of the homogeneous layer is presented. The spectral properties of this filter are analyzed based on the coupling modulation of two identical binary gratings at Brewster angle for a TM-polarized wave. The grating layer between substrate and homogeneous layers can significantly change the linewidth and resonant mode position, which are due to the asymmetric field distribution inside the grating layers. The tunability of the resonance can be altered on different resonant channels and a practical filter can be obtained in TM2 waveguide mode. Variation of filling factor can alter the field localization in the grating structure and significantly adjust the linewidth of the filter.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(310.2790) Thin films : Guided waves

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 10, 2011
Revised Manuscript: March 27, 2011
Manuscript Accepted: March 28, 2011
Published: April 14, 2011

Citation
Xin Liu, Shuqi Chen, Weiping Zang, and Jianguo Tian, "Triple-layer guided-mode resonance Brewster filter consisting of a homogenous layer and coupled gratings with equal refractive index," Opt. Express 19, 8233-8241 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901).
  2. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19(12), 919–921 (1994). [CrossRef] [PubMed]
  3. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997). [CrossRef]
  4. R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, “Resonance properties of dielectric waveguide gratings: theory and experiments at 4–18 GHz,” IEEE Trans. Antenn. Propag. 42(4), 567–569 (1994). [CrossRef]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating–waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997). [CrossRef]
  6. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003). [CrossRef]
  7. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008). [CrossRef]
  8. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010). [CrossRef] [PubMed]
  9. T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005). [CrossRef]
  10. N. Kaiser, T. Feigl, O. Stenzel, U. Schulz, and M. Yang, “Optical coatings: trends and challenges,” Opt. Precis. Eng. 13(4), 389–396 (2005).
  11. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17(26), 23459–23467 (2009). [CrossRef]
  12. Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006). [CrossRef]
  13. Z. S. Wang, T. Sang, J. T. Zhu, L. Wang, Y. G. Wu, and L. Y. Chen, “Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index,” Appl. Phys. Lett. 89(24), 241119 (2006). [CrossRef]
  14. T. Sang, Z. S. Wang, J. T. Zhu, L. Wang, Y. G. Wu, and L. Y. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15(15), 9659–9665 (2007). [CrossRef] [PubMed]
  15. Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, J. B. Chen, Y. W. Zhong, and S. L. Zhuang, “Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal,” Opt. Lett. 35(8), 1236–1238 (2010). [CrossRef] [PubMed]
  16. R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23(8), 612–614 (1998). [CrossRef]
  17. D. Shin, Z. S. Liu, and R. Magnusson, “Resonant Brewster filters with absentee layers,” Opt. Lett. 27(15), 1288–1290 (2002). [CrossRef]
  18. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004). [CrossRef]
  19. R. Magnusson and Y. Ding, “MENS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006). [CrossRef]
  20. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17(26), 23544–23555 (2009). [CrossRef]
  21. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structure as inverted Fabry-Perot interferometers,” J. Opt. Soc. Am. B 21(6), 1127–1136 (2004). [CrossRef]
  22. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  23. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11(4), 1321–1331 (1994). [CrossRef]
  24. E. Popov and M. Nevière, “Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence,” Opt. Lett. 25(9), 598–600 (2000). [CrossRef]
  25. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  26. K. Kawano, and T. Kitoh, Introduction to optical waveguide analysis: Solving Maxwell’s equations and the Schrödinger Equation (John Wiley & Sons, Inc., 2001).
  27. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited