OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8267–8276

Optically driven Archimedes micro-screws for micropump application

Chih-Lang Lin, Guy Vitrant, Michel Bouriau, Roger Casalegno, and Patrice L. Baldeck  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8267-8276 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven micropump action in a microfluidic channel is demonstrated with a non-optimized flow rate of 6pL/min. The optofluidic properties of such type of Archimedes micro-screws are quantitatively described by the conservation of momentum that occurs when the laser photons are reflected on the helical micro-screw surface.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 28, 2011
Revised Manuscript: March 20, 2011
Manuscript Accepted: March 22, 2011
Published: April 14, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Chih-Lang Lin, Guy Vitrant, Michel Bouriau, Roger Casalegno, and Patrice L. Baldeck, "Optically driven Archimedes micro-screws for micropump application," Opt. Express 19, 8267-8276 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994). [CrossRef]
  3. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67(16), 2269–2271 (1995). [CrossRef]
  4. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997). [CrossRef]
  5. R. C. Gauthier, “Laser-trapping properties of dual-component spheres,” Appl. Opt. 41(33), 7135–7144 (2002). [CrossRef] [PubMed]
  6. A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002). [CrossRef]
  7. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004). [CrossRef] [PubMed]
  8. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006). [CrossRef] [PubMed]
  9. H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008). [CrossRef]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef] [PubMed]
  11. P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001). [CrossRef]
  12. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002). [CrossRef]
  13. K. Ikuta, Y. Sasaki, L. Maegawa, and S. Maruo, “Biochemical IC chip for pretreatment in biochemical experiments,” MEMSYS, IEEE 6th Annu. Int. Conf., 19–23 Jan, 343–346 (2003).
  14. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006). [CrossRef] [PubMed]
  15. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006). [CrossRef]
  16. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007). [CrossRef]
  17. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009). [CrossRef]
  18. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002). [CrossRef]
  19. P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).
  20. C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005). [CrossRef]
  21. C.-L. Lin, I. Wang, B. Dollet, and P. L. Baldeck, “Velocimetry microsensors driven by linearly polarized optical tweezers,” Opt. Lett. 31(3), 329–331 (2006). [CrossRef] [PubMed]
  22. E. Guyon, J.P. Hulin, L. Petit, and C.D. Mitescu, Physical Hydrodynamics (Oxford Univ. Press 8, 2001).
  23. H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (5040 KB)     
» Media 2: MPG (4480 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited