OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8277–8284

Real-time terahertz near-field microscope

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8277-8284 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a terahertz pulse.

© 2011 OSA

OCIS Codes
(320.7160) Ultrafast optics : Ultrafast technology
(180.4243) Microscopy : Near-field microscopy
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: February 25, 2011
Revised Manuscript: March 30, 2011
Manuscript Accepted: March 31, 2011
Published: April 14, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, "Real-time terahertz near-field microscope," Opt. Express 19, 8277-8284 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  2. N. Horiuchi, “Terahertz technology: Endless applications,” Nat. Photonics 4(3), 140 (2010). [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” Microwave Symposium Digest. IEEE MTT-S International, 3, 1575–1578 (2004).
  4. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002). [CrossRef] [PubMed]
  5. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  6. A. G. Markez, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin (BSA) and collagen between 0.1 and 2.0 terahertz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000). [CrossRef]
  7. A. Dereux, C. Girard, and J.-C. Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies,” J. Chem. Phys. 112(18), 7775–7789 (2000). [CrossRef]
  8. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  9. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008). [CrossRef] [PubMed]
  10. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “Terahertz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998). [CrossRef]
  11. A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008). [CrossRef]
  12. Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25(15), 1122–1124 (2000). [CrossRef]
  13. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81(9), 1558–1560 (2002). [CrossRef]
  14. H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003). [CrossRef]
  15. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winner, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008). [CrossRef] [PubMed]
  16. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97(3), 031115 (2010). [CrossRef]
  17. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010). [CrossRef] [PubMed]
  18. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995). [CrossRef]
  19. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997). [CrossRef]
  20. A. Doi, F. Blanchard, H. Hirori, and K. Tanaka, “Near-field THz imaging of free induction decay from a tyrosine crystal,” Opt. Express 18(17), 18419–18424 (2010). [CrossRef] [PubMed]
  21. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995). [CrossRef] [PubMed]
  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  23. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  24. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  25. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B 24(9), 2545–2555 (2007). [CrossRef]
  26. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  27. H. R. Park and Y. M. Park, “H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010). [CrossRef]
  28. H. Tanaka, Y. Sugitania, J. Kitagawaa, Y. Kadoyaa, F. Blanchard, H. Hirorib, A. Doi, M. Nagai, and K. Tanaka, “Enhancement of THz field in a gap of dipole antenna,” 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), 1–1 (2010).
  29. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007). [CrossRef]
  30. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 715–716 John Wiley & Sons, Inc. (1999).
  31. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1586 KB)     
» Media 2: MOV (2443 KB)     
» Media 3: MOV (2709 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited