OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8285–8290

On-chip stimulated Brillouin scattering

Ravi Pant, Christopher G. Poulton, Duk-Yong Choi, Hannah Mcfarlane, Samuel Hile, Enbang Li, Luc Thevenaz, Barry Luther-Davies, Stephen J. Madden, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8285-8290 (2011)
http://dx.doi.org/10.1364/OE.19.008285


View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate on-chip stimulated Brillouin scattering (SBS) in an As2S3 chalcogenide rib waveguide. SBS was characterized in a 7cm long waveguide with a cross-section 4μm x 850nm using the backscattered signal and pump-probe technique. The measured Brillouin shift and its full-width at half-maximum (FWHM) linewidth were ~7.7 GHz and 34 MHz, respectively. Probe vs. pump power measurements at the Brillouin shift were used to obtain the gain coefficient from an exponential fit. The Brillouin gain coefficient obtained was 0.715 x 10−9 m/W. A probe gain of 16 dB was obtained for a CW pump power of ~300 mW.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 8, 2011
Manuscript Accepted: March 22, 2011
Published: April 14, 2011

Citation
Ravi Pant, Christopher G. Poulton, Duk-Yong Choi, Hannah Mcfarlane, Samuel Hile, Enbang Li, Luc Thevenaz, Barry Luther-Davies, Stephen J. Madden, and Benjamin J. Eggleton, "On-chip stimulated Brillouin scattering," Opt. Express 19, 8285-8290 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  2. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  3. T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-Light Storage: A Method for the Tunable Storage of Optical Packets With a Potential Delay-Bandwidth Product of Several Thousand Bit,” J. Lightwave Technol. 28(17), 2586–2592 (2010). [CrossRef]
  4. M. J. Lee, R. Pant, and M. A. Neifeld, “Improved slow-light delay performance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings,” Appl. Opt. 47(34), 6404–6415 (2008). [CrossRef] [PubMed]
  5. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16(4), 2764–2777 (2008). [CrossRef] [PubMed]
  6. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32(14), 1986–1988 (2007). [CrossRef] [PubMed]
  7. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006). [CrossRef] [PubMed]
  8. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982). [CrossRef] [PubMed]
  9. K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010). [CrossRef]
  10. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010). [CrossRef] [PubMed]
  11. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007). [CrossRef]
  12. M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering,” Opt. Express 18(9), 9435–9446 (2010). [CrossRef] [PubMed]
  13. P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010). [CrossRef] [PubMed]
  14. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007). [CrossRef] [PubMed]
  15. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006). [CrossRef]
  16. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011). [CrossRef]
  17. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010). [CrossRef] [PubMed]
  18. L. Landau, and E. Lifshitz, Theory of Elasticity (Pergamon Press, 1959).
  19. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited