OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8297–8302

Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold

Xue Huang, William O. Charles, and Claire Gmachl  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8297-8302 (2011)
http://dx.doi.org/10.1364/OE.19.008297


View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a “two-phonon-continuum” depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 16, 2011
Manuscript Accepted: April 3, 2011
Published: April 14, 2011

Citation
Xue Huang, William O. Charles, and Claire Gmachl, "Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold," Opt. Express 19, 8297-8302 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8297


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010). [CrossRef]
  2. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010). [CrossRef]
  3. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007). [CrossRef]
  4. R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  5. I. Sydoryk, A. Lim, W. Jäger, J. Tulip, and M. T. Parsons, “Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure,” Appl. Opt. 49(6), 945–949 (2010). [CrossRef] [PubMed]
  6. R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).
  7. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999). [CrossRef]
  8. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001). [CrossRef]
  9. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010). [CrossRef]
  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  11. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010). [CrossRef]
  12. D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001). [CrossRef]
  13. J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001). [CrossRef]
  14. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007). [CrossRef]
  15. M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009). [CrossRef]
  16. A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited