OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8312–8319

Nonlinear oscillator metamaterial model: numerical and experimental verification

E. Poutrina, D. Huang, Y. Urzhumov, and D. R. Smith  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8312-8319 (2011)
http://dx.doi.org/10.1364/OE.19.008312


View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems.

© 2011 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 4, 2011
Revised Manuscript: March 25, 2011
Manuscript Accepted: March 29, 2011
Published: April 15, 2011

Citation
E. Poutrina, D. Huang, Y. Urzhumov, and D. R. Smith, "Nonlinear oscillator metamaterial model: numerical and experimental verification," Opt. Express 19, 8312-8319 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  2. M. Lapine, M. Gorkunov, and K. H. Ringhofer, “Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements,” Phys. Rev. E 67, 065601 (2003). [CrossRef]
  3. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14, 9344–9349 (2006). [CrossRef] [PubMed]
  4. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express 16, 16058–16063 (2008). [CrossRef] [PubMed]
  5. I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008). [CrossRef]
  6. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third- harmonic generation from magnetic metamaterials,” Opt. Express 15, 5238–5247 (2007). [CrossRef] [PubMed]
  7. A. B. Kozyrev and D. W. van derWeide, “Nonlinear left-handed transmission line metamaterials,” J. Phys. D: Appl. Phys. 41, 173001 (10pp) (2008).
  8. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” N. J. Phys. 12, 093010 (2010). [CrossRef]
  9. R. W. Boyd, Nonlinear Optics , 3rd ed. (Academic Press, 2008).
  10. S. Larouche, A. Rose, E. Poutrina, D. Huang, and D. R. Smith, “Experimental determination of the quadratic nonlinear magnetic susceptibility of a varactor-loaded split ring resonator metamaterial,” Appl. Phys. Lett. 97, 011109 (2010). [CrossRef]
  11. S. Larouche and D. R. Smith, “A retrieval method for nonlinear metamaterials,” Opt. Commun. 283, 1621–1627 (2010). [CrossRef]
  12. D. Huang, E. Poutrina, and D. R. Smith, “Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies,” Appl. Phys. Lett. 96, 104104 (3pp) (2010).
  13. J. Garcia-Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelinek , “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys. 98, 033103 (2005). [CrossRef]
  14. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
  15. E. Poutrina, S. Larouche, and D. R. Smith, “Parameteric oscillator based on a single-layer resonant metamaterial,” Opt. Commun. 283, 1640–1646 (2010). [CrossRef]
  16. V.V. Migulin, V.I. Medvedev, E. R. Mustel, and V.N. Parygin, Theory of Oscillations . Mir Publishers, Moscow, 1983.
  17. Skyworks, “Skyworks smv123x series hyperabrupt junctiontuning varactors,” Technical report, Skyworks, September 2009. Data sheet. http://pdf1.alldatasheet.com/datasheet-pdf/view/155290/SKYWORKS/SMV1231-079.html ).
  18. I. Shadrivov, N. Zharova, A. Zharov, and Y. Kivshar, “Nonlinear transmission and spatiotemporal solitons in metamaterials with negative refraction,” Opt. Express 13, 1291–1298 (2005). [CrossRef] [PubMed]
  19. B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited