OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8327–8335

Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide

Kwang Jo Lee, Sheng Liu, Katia Gallo, Periklis Petropoulos, and David J. Richardson  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8327-8335 (2011)
http://dx.doi.org/10.1364/OE.19.008327


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a systematic and comparative study of the acceptance bandwidths of two cascaded quadratic nonlinear processes in periodically poled lithium niobate waveguides, namely cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) and cascaded sum-frequency generation and difference-frequency generation (cSFG/DFG). We first theoretically and experimentally study the acceptance bandwidths of both the individual second-harmonic generation (SHG) and sum-frequency generation (SFG) processes in the continuous wave (CW) and pulsed-pump regimes. Our results show that the SHG bandwidth is approximately half that of the SFG process in the CW regime, whereas the SHG acceptance bandwidth can approach the CW SFG bandwidth limit when pulsed-pump is used. As a consequence we conclude that the tuning bandwidths of both cascaded processes should be similar in the pulsed pump regime once the pump pulse bandwidths approach that of SFG (i.e. the cSHG/DFG bandwidth is not limited by the CW SHG bandwidth). We confirm that this is the case experimentally.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3730) Integrated optics : Lithium niobate
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Integrated Optics

History
Original Manuscript: January 25, 2011
Revised Manuscript: March 8, 2011
Manuscript Accepted: March 8, 2011
Published: April 15, 2011

Citation
Kwang Jo Lee, Sheng Liu, Katia Gallo, Periklis Petropoulos, and David J. Richardson, "Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide," Opt. Express 19, 8327-8335 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8327


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006). [CrossRef]
  3. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997). [CrossRef]
  4. B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40(3), 256–261 (2004). [CrossRef]
  5. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010). [CrossRef] [PubMed]
  6. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007). [CrossRef]
  7. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007). [CrossRef]
  8. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009). [CrossRef] [PubMed]
  9. S. Liu, K. J. Lee, K. Gallo, P. Petropoulos, and D. J. Richardson, “Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides,” Opt. Lett. 35(22), 3724–3726 (2010). [CrossRef] [PubMed]
  10. S. Liu, K. J. Lee, F. Parmigiani, K. Gallo, P. Petropoulos, and D. J. Richardson, “Retiming of short pulses using quadratic cascading in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 23(2), 94–96 (2011). [CrossRef]
  11. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001). [CrossRef]
  12. Y. Wang, J. Fonseca-Campos, C.-Q. Xu, S. Yang, E. A. Ponomarev, and X. Bao, “Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide,” Appl. Opt. 45(21), 5391–5403 (2006). [CrossRef] [PubMed]
  13. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008). [CrossRef]
  14. J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008). [CrossRef]
  15. J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006). [CrossRef]
  16. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003), Chap. 2.
  18. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17(2), 304–318 (2000). [CrossRef]
  19. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited