OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8394–8405

Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8394-8405 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical framework for modeling of continuous wave Yb-doped fiber lasers with highly nonlinear cavity dynamics. The developed approach has shown good agreement between theoretical predictions and experimental results for particular scheme of Yb-doped laser with large spectral broadening during single round trip. The model is capable to accurately describe main features of the experimentally measured laser outputs such as power efficiency slope, power leakage through fibre Bragg gratings, spectral broadening and spectral shape of generated radiation.

© 2011 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 24, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: April 11, 2011
Published: April 15, 2011

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, "Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics," Opt. Express 19, 8394-8405 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008). [CrossRef]
  3. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804(R) (2009). [CrossRef]
  4. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  5. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008). [CrossRef] [PubMed]
  6. K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008). [CrossRef] [PubMed]
  7. K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374(34), 3585–3589 (2010). [CrossRef]
  8. A. S. Kurkov and E. M. Dianov, “Moderate-power CW fiber lasers,” Quantum Electron. 34(10), 881–900 (2004). [CrossRef]
  9. O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron. 35(4), 335–338 (2005). [CrossRef]
  10. V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, D. A. Grukh, and E. M. Dianov, “Two-frequency fibre Raman laser,” Quantum Electron. 34(3), 213–215 (2004). [CrossRef]
  11. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers—versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995). [CrossRef]
  12. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded Raman fiber lasers,” IEEE J. Quantum Electron. 36(10), 1117–1122 (2000). [CrossRef]
  13. N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett. 37(21), 1281–1283 (2001). [CrossRef]
  14. E. M. Dianov, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, O. N. Egorova, N. Kurukitkoson, and S. K. Turitsyn, “Raman fiber source for the 1.6-1.75 micrometer spectral region,” Laser Phys. 13(3), 397–400 (2003).
  15. N. Kurukitkoson, S. K. Turitsyn, A. S. Kurkov, and E. M. Dianov, “Multiple output wavelength composite Raman fiber converter,” Laser Phys. 14(9), 1227–1230 (2004).
  16. N. Vermeulen, C. Debaes, A. A. Fotiadi, K. Panajotov, and H. Thienpont, “Stokes-anti-Stokes iterative resonator method for modeling Raman lasers,” IEEE J. Quantum Electron. 42(11), 1144–1156 (2006). [CrossRef]
  17. J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003). [CrossRef]
  18. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006). [CrossRef] [PubMed]
  19. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008). [CrossRef] [PubMed]
  20. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18(5), 4469–4477 (2010). [CrossRef] [PubMed]
  21. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]
  22. R. Paschotta, Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com .
  23. N. Dalloz, S. Randoux, and P. Suret, “Influence of dispersion of fiber Bragg grating mirrors on formation of optical power spectrum in Raman fiber lasers,” Opt. Lett. 35(15), 2505–2507 (2010). [CrossRef] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  25. S. V. Smirnov, J. D. Ania-Castañón, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006). [CrossRef]
  26. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000). [CrossRef]
  27. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975). [CrossRef]
  28. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992). [CrossRef]
  29. Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099–2111 (1997). [CrossRef]
  30. K. P. Komarov, “Theory of stationary ultrashort pulses in solid-state lasers with passive mode-locking,” Opt. Spectrosc. 60, 231–234 (1986).
  31. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006). [CrossRef]
  32. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]
  33. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004). [CrossRef] [PubMed]
  34. F. Vanholsbeeck, St. Coen, Ph. Emplit, C. Martinelli, F. Leplingard, and T. Sylvestre, “Numerical modeling of a four-wave-mixing-assisted Raman fiber laser,” Opt. Lett. 29(23), 2719–2721 (2004). [CrossRef] [PubMed]
  35. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007). [CrossRef] [PubMed]
  36. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, “Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers,” J. Opt. Soc. Am. B 26(2), 346–352 (2009). [CrossRef]
  37. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A 81(3), 033828 (2010). [CrossRef]
  38. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009). [CrossRef] [PubMed]
  39. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001). [CrossRef] [PubMed]
  40. L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006). [CrossRef]
  41. A. I. Latkin, A. S. Kurkov, and S. K. Turitsyn, “Spectral broadening and power leakage in CW Yb-doped fibre laser,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CJ_P31.
  42. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about the validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004). [CrossRef]
  43. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007). [CrossRef] [PubMed]
  44. B. Barviau, S. Randoux, and P. Suret, “Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber,” Opt. Lett. 31(11), 1696–1698 (2006). [CrossRef] [PubMed]
  45. S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. 4(1), 145–161 (2003). [CrossRef]
  46. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef]
  47. A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29(10), 1078–1080 (2004). [CrossRef] [PubMed]
  48. A. A. Fotiadi and P. Mégret, “Self-Q-switched Er-Brillouin fiber source with extra-cavity generation of a Raman supercontinuum in a dispersion-shifted fiber,” Opt. Lett. 31(11), 1621–1623 (2006). [CrossRef] [PubMed]
  49. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27(2), 83–85 (2002). [CrossRef]
  50. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited