OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8406–8412

Population inversion and low cooperative upconversion in Er-doped silicon-rich silicon nitride waveguide

Jee Soo Chang, In Yong Kim, Gun Yong Sung, and Jung H. Shin  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8406-8412 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-mode, strip-loaded silicon-rich silicon nitride (SRSN) waveguide with 11 at.% excess Si and 1.7×1020 cm−3 Er was fabricated and characterized. By using a 350 nm thick SRSN:Er core layer and a 850 nm wide SiO2 strip, a high core-mode overlap of 0.85 and low transmission loss of 2.9 dB/cm is achieved. Population inversion of 0.73-0.75, close to the theoretical maximum, is estimated to have been achieved via 1480 nm resonant pumping, indicating that nearly all doped Er in SRSN are optically active. Analysis of the pump power dependence of Er3+ luminescence intensity and lifetime indicate that the Er cooperative upconversion coefficient in SRSN:Er is as low as 2.1×10−18 cm3/sec.

© 2011 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: November 16, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: April 6, 2011
Published: April 18, 2011

Jee Soo Chang, In Yong Kim, Gun Yong Sung, and Jung H. Shin, "Population inversion and low cooperative upconversion in Er-doped silicon-rich silicon nitride waveguide," Opt. Express 19, 8406-8412 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for instance, “Silicon Photonics,”Topics in Applied Physics Vol. 94, edited by L. Pavesi and D. J. Lockwood (Springer, 2004). [PubMed]
  2. D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005). [CrossRef]
  3. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004). [CrossRef]
  4. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005). [CrossRef]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  6. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010). [CrossRef] [PubMed]
  7. S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006). [CrossRef]
  8. J. S. Chang, K. Suh, M.-S. Yang, and J. H. Shin, “Development and application of Er-doped silicon-rich silicon nitrides and Er silicates for on-chip light sources,” “Silicon Photonics II,” Topics in Applied Physics Vol. 119, 95–130 (2011).
  9. L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008). [CrossRef]
  10. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009). [CrossRef]
  11. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009). [CrossRef]
  12. J. S. Chang, S. C. Eom, G. Y. Sung, and J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009). [CrossRef]
  13. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010). [CrossRef] [PubMed]
  14. G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006). [CrossRef]
  15. S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010). [CrossRef]
  16. W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991). [CrossRef]
  17. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides,” Opt. Express 18(8), 7724–7731 (2010). [CrossRef] [PubMed]
  18. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996). [CrossRef]
  19. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010). [CrossRef]
  20. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991). [CrossRef]
  21. I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009). [CrossRef]
  22. P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006). [CrossRef]
  23. J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006). [CrossRef]
  24. S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006). [CrossRef]
  25. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964). [CrossRef]
  26. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1997).
  27. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997). [CrossRef]
  28. E. Snoeks, G. N. Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8), 1468–1474 (1995). [CrossRef]
  29. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited