OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8423–8432

Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm

Atsushi Momose, Wataru Yashiro, Sébastien Harasse, and Hiroaki Kuwabara  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8423-8432 (2011)
http://dx.doi.org/10.1364/OE.19.008423


View Full Text Article

Enhanced HTML    Acrobat PDF (3990 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

X-ray Talbot interferometry is attractive as a method for X-ray phase imaging and phase tomography for objects that weakly absorb X-rays. Because X-ray Talbot interferometry has the advantage that X-rays of a broad energy bandwidth can be used, high-speed X-ray phase imaging is possible with white synchrotron radiation. In this paper, we demonstrate time-resolved three-dimensional observation with X-ray Talbot interferometry (namely, four-dimensional X-ray phase tomography). Differential phase images, from which a phase tomogram was reconstructed, were obtained through the Fourier-transform method, unlike the phase-stepping method that requires several (at least three) moiré images to be measured sequentially in order to generate one differential phase image. We demonstrate dynamic observation of a living worm in three dimensions with a time resolution of 0.5 s, visualizing a drastic change in the respiratory tract.

© 2011 OSA

OCIS Codes
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging
(340.7450) X-ray optics : X-ray interferometry

ToC Category:
X-ray Optics

History
Original Manuscript: December 22, 2010
Revised Manuscript: March 29, 2011
Manuscript Accepted: April 4, 2011
Published: April 18, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Atsushi Momose, Wataru Yashiro, Sébastien Harasse, and Hiroaki Kuwabara, "Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm," Opt. Express 19, 8423-8432 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Fitzgerald, “Phase-sensitive X-ray imaging,” Phys. Today 53(7), 23–26 (2000). [CrossRef]
  2. A. Momose, “Phase-sensitive imaging and phase tomography using X-ray interferometers,” Opt. Express 11, 2303–2314 (2003). [CrossRef] [PubMed]
  3. A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 446355–6367 (2005). [CrossRef]
  4. K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 591–99 (2010). [CrossRef]
  5. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003). [CrossRef]
  6. T. Weitkamp, A. Daiz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “Quantitative X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005). [CrossRef] [PubMed]
  7. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254–5262 (2006). [CrossRef]
  8. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923–6930 (2007). [CrossRef] [PubMed]
  9. M. Bech, O. Bunk, C. David, R. Ruth, J. Rifkin, R. Loewen, R. Feidenhans’I, and F. Pfeiffer, “Hard X-ray phase-contrast imaging with the compact light source based on inverse compton X-rays,” J. Synchrotron Rad. 16, 43–47 (2009). [CrossRef]
  10. G. Schulz, T. Weitkamp, I. Zenette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010). [CrossRef] [PubMed]
  11. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009). [CrossRef] [PubMed]
  12. A. Momose, W. Yashiro, S. Huang, H. Kuwabara, and K. Kawabata, “High-speed X-ray phase tomography with grating interferometer and white synchrotron light,” AIP Proc. CP1234, 441–444 (2010). [CrossRef]
  13. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  14. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  15. A. Momose, W. Yashiro, and Y. Takeda, “X-ray phase imaging with Talbot interferometry,” Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems , eds. Y. Censor, M. Jiang, and G. Wang, (Medical Physics Publishing, 2010) pp. 281–320.
  16. G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988). [CrossRef] [PubMed]
  17. T. Tanaka and H. Kitamura, “SPECTRA: a synchrotron radiation calculation code,” J. Synchrotron Rad. 8, 1221–1228 (2001). [CrossRef]
  18. M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T Hattori, “Fabrication of diffraction grating for X-ray Talbot interferometer,” Microsyst. Technol. 13, 543–546 (2007). [CrossRef]
  19. Y. Takeda, W. Yashiro, Y. Suzuki, S. Aoki, T. Hattori, and A. Momose, “X-ray phase imaging with single phase grating,” Jpn. J. Appl. Phys. 46, L89–L91 (2007). [CrossRef]
  20. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  21. Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard X rays,” Phys. Rev. A 79, 013815 (2009). [CrossRef]
  22. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray scattering radiography yields bone structural information,” Radiology 251, 910–918 (2009). [CrossRef] [PubMed]
  23. Z. Wang, Z. Huang, L. Zhang, K. Kang, and P. Zhu, “Fast x-ray phase-contrast imaging using high resolution detector,” IEEE Trans. Nucl. Sci. 56, 1383–1388 (2009). [CrossRef]
  24. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differentail phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 351932–1934 (2010). [CrossRef] [PubMed]
  25. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Broennimann, C. Gruenzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008). [CrossRef] [PubMed]
  26. W. Yashiro, Y. Terui, K. Kawabata, and A. Momose, “On the origin of visibility contrast in X-ray Talbot interferometry,” Opt. Express 18, 16890–16901 (2010). [CrossRef] [PubMed]
  27. A. Momose, W. Yashiro, S. Harasse, H. Kuwabara, and K. Kawabata, “Four-dimensional X-ray phase tomography with Talbot interferometer and white synchrotron light,” Proc. SPIE 7804, 780405 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (2770 KB)      QuickTime
» Media 2: MPG (3330 KB)      QuickTime
» Media 3: MPEG (3116 KB)      QuickTime
» Media 4: MPEG (3826 KB)      QuickTime
» Media 5: MPG (3582 KB)      QuickTime
» Media 6: MPG (2680 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited