OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8471–8485

Absorption imaging of ultracold atoms on atom chips

David A. Smith, Simon Aigner, Sebastian Hofferberth, Michael Gring, Mauritz Andersson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten Schumm, and Jörg Schmiedmayer  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8471-8485 (2011)
http://dx.doi.org/10.1364/OE.19.008471


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(110.0110) Imaging systems : Imaging systems

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 24, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 30, 2011
Published: April 18, 2011

Citation
David A. Smith, Simon Aigner, Sebastian Hofferberth, Michael Gring, Mauritz Andersson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten Schumm, and Jörg Schmiedmayer, "Absorption imaging of ultracold atoms on atom chips," Opt. Express 19, 8471-8485 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Atom Chips , J. Reichel and V. Vuletic, eds. (Wiley VCH, 2011). [CrossRef]
  2. J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007). [CrossRef]
  3. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
  4. J. Schmiedmayer, “A wire trap for neutral atoms,” Appl. Phys. B 60, 169–179 (1995). [CrossRef]
  5. J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999). [CrossRef]
  6. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999). [CrossRef]
  7. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000). [CrossRef] [PubMed]
  8. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000). [CrossRef] [PubMed]
  9. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000). [CrossRef]
  10. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001). [CrossRef] [PubMed]
  11. J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998) [CrossRef]
  12. P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003). [CrossRef] [PubMed]
  13. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001). [CrossRef] [PubMed]
  14. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001). [CrossRef] [PubMed]
  15. A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002). [CrossRef]
  16. C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005). [CrossRef]
  17. Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004). [CrossRef]
  18. J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002). [CrossRef]
  19. A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003). [CrossRef] [PubMed]
  20. M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004) [CrossRef]
  21. J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004) [CrossRef]
  22. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005). [CrossRef] [PubMed]
  23. A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005). [CrossRef]
  24. S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008). [CrossRef] [PubMed]
  25. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004). [CrossRef] [PubMed]
  26. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006). [CrossRef]
  27. T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005). [CrossRef]
  28. Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005) [CrossRef] [PubMed]
  29. P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009). [CrossRef]
  30. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000). [CrossRef]
  31. P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006). [CrossRef]
  32. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007). [CrossRef] [PubMed]
  33. J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010). [CrossRef]
  34. A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008). [CrossRef]
  35. W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.
  36. S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003). [CrossRef]
  37. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009). [CrossRef]
  38. S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004). [CrossRef]
  39. M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008). [CrossRef]
  40. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  41. B. E. A. Saleh and M. C. Teich, Fundamentals Of Photonics (John Wiley & Sons, 1991). [CrossRef]
  42. C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010). [CrossRef]
  43. P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007). [CrossRef]
  44. M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006). [CrossRef]
  45. D. A. Steck, “Rubidium 87 D Line Data,” (2001), http://steck.us/alkalidata/rubidium87numbers.pdf .
  46. D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010). [CrossRef]
  47. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007). [CrossRef] [PubMed]
  48. S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited