OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8506–8513

Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams

Alexander Normatov, Boris Spektor, Yehuda Leviatan, and Joseph Shamir  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8506-8513 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles

ToC Category:
Optics at Surfaces

Original Manuscript: February 4, 2011
Revised Manuscript: March 27, 2011
Manuscript Accepted: March 28, 2011
Published: April 18, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Alexander Normatov, Boris Spektor, Yehuda Leviatan, and Joseph Shamir, "Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams," Opt. Express 19, 8506-8513 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer 2007).
  2. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008). [CrossRef] [PubMed]
  3. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [CrossRef] [PubMed]
  4. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006). [CrossRef]
  5. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005). [CrossRef]
  6. J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001). [CrossRef]
  7. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001). [CrossRef] [PubMed]
  8. M. I. Tribelsky, “Anomalous light absorption by small particles,” arXiv:0912.3644v1.
  9. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010). [CrossRef]
  10. M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010). [CrossRef]
  11. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001). [CrossRef]
  12. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  13. A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).
  14. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  15. C. Rockstuhl and H. P. Herzig, “Wavelength-dependent optical force on elliptical silver cylinders at plasmon resonance,” Opt. Lett. 29(18), 2181–2183 (2004). [CrossRef] [PubMed]
  16. J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25(2), 493–514 (2008). [CrossRef]
  17. K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008). [CrossRef] [PubMed]
  18. N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009). [CrossRef]
  19. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008). [CrossRef] [PubMed]
  20. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007). [CrossRef] [PubMed]
  21. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006). [CrossRef] [PubMed]
  22. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009). [CrossRef]
  23. A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010). [CrossRef]
  24. A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009). [CrossRef]
  25. Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987). [CrossRef]
  26. Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988). [CrossRef]
  27. Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988). [CrossRef]
  28. J. J. Stamnes, “Focusing of two-dimensional waves,” J. Opt. Soc. Am. 71(1), 15–31 (1981). [CrossRef]
  29. J. J. Stamnes and H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory,” J. Opt. Soc. Am. A 15(5), 1285–1291 (1998). [CrossRef]
  30. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974). [CrossRef]
  31. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010). [CrossRef] [PubMed]
  32. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006). [CrossRef]
  33. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited