OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8514–8525

Enhanced optical transmission through sub-wavelength centered-polygonal hole arrays in silver thin film on silica substrate

Hesam Edin Arabi, Minkyu Park, Marzieh Pournoury, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8514-8525 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigated the enhanced optical transmission through sub-wavelength centered-polygonal hole arrays (CPHA) in a thin Ag film deposited on the silica substrate. In octagonal and decagonal-CPHAs, we observed new hybrid transmission characteristics that were inherited from both crystalline and quasi-crystalline hole arrays. This peculiar nature was attributed to the unique arrangement of CPHAs which can be covered with copies of a single unit cell as in crystalline arrays, and their rotational symmetry as observed in quasi-crystalline arrays. Hybrid natures in CPHAs were further investigated in the transmission spectra and Fourier space representations of the arrays. Contributions from the nearest neighbor hole-to-hole distance to enhanced transmission were analyzed in order to quantify the plasmonic contributions from the Air/Ag interface and Silica/Ag interface. We also investigated the impact of layer structure, Air/Ag/Air versus Air/Ag/Silica in the transmissions and found that in CPHAs in Air/Ag/Silica structures, contributions from the Air/Ag interface became dominant in contrast to crystalline hole arrays with lower fold symmetry.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: February 10, 2011
Revised Manuscript: April 4, 2011
Manuscript Accepted: April 5, 2011
Published: April 18, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Hesam Edin Arabi, Minkyu Park, Marzieh Pournoury, and Kyunghwan Oh, "Enhanced optical transmission through sub-wavelength centered-polygonal hole arrays in silver thin film on silica substrate," Opt. Express 19, 8514-8525 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003). [CrossRef]
  4. S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008). [CrossRef]
  5. F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).
  6. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004). [CrossRef] [PubMed]
  7. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008). [CrossRef] [PubMed]
  8. G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007). [CrossRef] [PubMed]
  9. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  10. J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express 14(15), 6595–6603 (2006). [CrossRef] [PubMed]
  11. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002). [CrossRef]
  12. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006). [CrossRef]
  13. D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006). [CrossRef]
  14. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B 24(9), 2545–2554 (2007). [CrossRef]
  15. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000). [CrossRef]
  16. J. Xue, W. Zhou, B. Dong, X. Wang, Y. Chen, E. Huq, W. Zeng, X. Qu, and R. Liu, “Surface Plasmon enhanced transmission through planar gold quasicrystals fabricated by focused ion beam technique,” Microelectronic Engineering. http://homepage.fudan.edu.cn/~fdnil/paper/Surface%20plasmon%20enhanced%20transmission%20through%20planar%20gold.PDF .
  17. M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006). [CrossRef]
  18. A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008). [CrossRef]
  19. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001). [CrossRef] [PubMed]
  20. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  21. S. H. Chang, S. K. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  22. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999). [CrossRef]
  23. R. Komrska, “Finite crystal lattice and its Fourier transform. lattice amplitude and shape amplitude”. http://physics.fme.vutbr.cz/~komrska/Eng/KapF17.pdf .
  24. D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants of Solids (E. D. Palick, Ed. Orlando, FL Academic, 1985).
  25. FDTD Lumerical Solutions Inc, www.lumerical.com .
  26. M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006). [CrossRef]
  27. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  28. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited