OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8602–8609

Optofluidic waveguides for reconfigurable photonic systems

Aram J. Chung and David Erickson  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8602-8609 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the development of two liquid waveguide based photonic elements for use in reconfigurable photonic systems. This work demonstrates the ability to couple light from a conventional optical fiber to an adaptable liquid-core/liquid-cladding waveguide and back again to an optical fiber(s) enabling us to take advantage of both liquid- and solid-state photonic modalities. We demonstrate and characterize the use of this fiber-in and fiber-out system as either an optical switch or signal attenuator. Microscale flow control enables the adaptive morphology and tunable position of the liquid waveguide yielding an attenuation range of 3.1-10.7 dB, operability over a broad bandwidth spanning the range of wavelengths from visible to telecommunication, and a 1x2 sub-second switching system with a cross-talk as low as 20 dB and maximum coupling efficiency of 3.87 dB.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(130.3120) Integrated optics : Integrated optics devices
(160.2290) Materials : Fiber materials
(230.7370) Optical devices : Waveguides
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: March 10, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: April 6, 2011
Published: April 18, 2011

Aram J. Chung and David Erickson, "Optofluidic waveguides for reconfigurable photonic systems," Opt. Express 19, 8602-8609 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices,” Nanotechnology 16(6), 888–900 (2005). [CrossRef]
  2. L. Y. Lin and E. L. Goldstein, “Opportunities and challenges for MEMS in lightwave communications,” IEEE J. Sel. Top. Quantum Electron. 8, 163–172 (2002). [CrossRef]
  3. S. E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures (CRC Press, 2002).
  4. M. Gad-el-Hak, MEMS: Design and Fabrication (CRC Press, 2006).
  5. M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87, 241101 (2005). [CrossRef]
  6. M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006). [CrossRef]
  7. M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004). [CrossRef]
  8. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000). [CrossRef]
  9. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96, 131103 (2010). [CrossRef]
  10. E. Camargo, H. Chong, and R. De La Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12(4), 588–592 (2004). [CrossRef] [PubMed]
  11. L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]
  12. D. Erickson, C. H. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–78 (2008).
  13. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  15. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006). [CrossRef] [PubMed]
  16. C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008). [CrossRef] [PubMed]
  17. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88, 111107 (2006). [CrossRef]
  18. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005). [CrossRef]
  19. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  20. J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008). [CrossRef] [PubMed]
  21. S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008). [CrossRef] [PubMed]
  22. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007). [CrossRef] [PubMed]
  23. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006). [CrossRef] [PubMed]
  24. W. Z. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010). [CrossRef]
  25. E. E. Jung, A. J. Chung, and D. Erickson, “Analysis of liquid-to-solid coupling and other performance parameters for microfluidically reconfigurable photonic systems,” Opt. Express 18(11), 10973–10984 (2010). [CrossRef] [PubMed]
  26. Y. C. Seow, S. P. Lim, and H. P. Lee, “Tunable optofluidic switch via hydrodynamic control of laminar flow rate,” Appl. Phys. Lett. 95, 114105 (2009). [CrossRef]
  27. J. M. Lim, J. P. Urbanski, T. Thorsen, and S. M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. In press. [PubMed]
  28. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3(1), 335–373 (2001). [CrossRef] [PubMed]
  29. E. E. Jung, A. J. Chung, and D. Erickson, “Advancements in microfluidically reconfigurable photonics ” in European Optical Society Conference on Optofluidics (2011).
  30. J. G. Bayly, V. B. Kartha, and W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7µm to 10µm,” Infrared Phys. 3, 211–222 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4195 KB)     
» Media 2: MOV (3071 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited