OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8728–8734

Enhanced random lasing in ZnO nanocombs assisted by Fabry–Perot resonance

Yungting Chen and Yangfang Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8728-8734 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ultraviolet random lasing behavior of an ensemble of ZnO nanocombs has been demonstrated. It is found that the Fabry-Perot resonance induced by nanocomb geometry can greatly enhance random lasing action with a low threshold condition. Besides, the emission spectra exhibit few sharp lasing peaks with a full width at half maximum (FWHM) of less than 0.3 nm and a narrow background emission with a FWHM of about 5 nm. Cathodoluminescence mapping images are utilized to analyze the Fabry-Perot resonance phenomenon. The resonant effect on the lasing system is further confirmed by nanocombs with different resonant cavity lengths. The unique lasing behavior induced by the simultaneous occurrence of Fabry-Perot resonance and random laser action shown here may open up a new possibility for the creation of highly efficient light emitting devices.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(160.4760) Materials : Optical properties
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 24, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: April 15, 2011
Published: April 19, 2011

Yungting Chen and Yangfang Chen, "Enhanced random lasing in ZnO nanocombs assisted by Fabry–Perot resonance," Opt. Express 19, 8728-8734 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. D. Li, S. F. Yu, S. P. Lau, and E. S. P. Leong, “Simultaneous formation of visible and ultraviolet random lasings in ZnO films,” Appl. Phys. Lett. 89(2), 021110 (2006). [CrossRef]
  2. M. Anni, S. Lattante, T. Stomeo, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, “Modes interaction and light transport in bidimensional organic random lasers in the weak scattering limit,” Phys. Rev. B 70(19), 195216 (2004). [CrossRef]
  3. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004). [CrossRef]
  4. W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Pérez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser, “Towards a random laser with cold atoms,” J. Opt. 12(2), 024002 (2010). [CrossRef]
  5. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  6. J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, “Single Nanowire Lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001). [CrossRef]
  7. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Funct. Mater. 12(5), 323–331 (2002). [CrossRef]
  8. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95(24), 241110 (2009). [CrossRef]
  9. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga-Pérez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247(6), 1282–1293 (2010). [CrossRef]
  10. D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131(6), 2125–2127 (2009). [CrossRef] [PubMed]
  11. H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, and P. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125(16), 4728–4729 (2003). [CrossRef] [PubMed]
  12. H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. Yang, “ZnO Nanoribbon Microcavity Lasers,” Adv. Mater. 15(22), 1907–1911 (2003). [CrossRef]
  13. D. Wang, H. W. Seo, C.-C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006). [CrossRef]
  14. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004). [CrossRef]
  15. L. Miao, S. Tanemura, Y. Ieda, M. Tanemura, Y. Hayashi, H. Y. Yang, S. P. Lau, B. K. Tay, and Y. G. Cao, “Synthesis, morphology and random laser action of ZnO nanostructures,” Surf. Sci. 601(13), 2660–2663 (2007). [CrossRef]
  16. Y. S. Lim, J. W. Park, S.-T. Hong, and J. Kim, “Carbothermal synthesis of ZnO nanocomb structure,” Mater. Sci. Eng. B 129(1-3), 100–103 (2006). [CrossRef]
  17. Z. W. Pan, S. M. Mahurin, S. Dai, and D. H. Lowndes, “Nanowire array gratings with ZnO combs,” Nano Lett. 5(4), 723–727 (2005). [CrossRef] [PubMed]
  18. S. Yin, Y. Q. Chen, Y. Su, and Q. T. Zhou, “Preparation and Photoluminescence of ZnO Comb-Like Structure and Nanorod Arrays,” Chin. J. Chem. Phys. 20(3), 308–314 (2007). [CrossRef]
  19. Y. H. Leung, A. B. Djurišić, and M. H. Xie, “Synthesis and Properties of ZnO Nano-ribbon and Comb Structures,” Int. Conf. on Phys. of Semi. 27th, 879–880 (2005).
  20. H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006). [CrossRef]
  21. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  22. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004). [CrossRef]
  23. J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009). [CrossRef]
  24. A. V. Kabashin, A. Trudeau, W. Marine, and M. Meunier, “Synthesis of efficient ZnO-based random lasing medium using laser-induced air breakdown processing,” Appl. Phys. Lett. 91(20), 201101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited