OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8735–8749

Silicon-based optical leaky wave antenna with narrow beam radiation

Qi Song, Salvatore Campione, Ozdal Boyraz, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8735-8749 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a design of a dielectric (silicon nitride) optical leaky wave antenna (OLWA) with periodic semiconductor (silicon) corrugations, capable of producing narrow beam radiation. The optical antenna radiates a narrow beam because a leaky wave (LW) with low attenuation constant is excited at one end of the corrugated dielectric waveguide. We show that pointing angle, beam-width, and operational frequency are all related to the LW complex wavenumber, whose value depends on the amount of silicon perturbations in the waveguide. In this paper, the propagation constant and the attenuation coefficient of the LW in the periodic structure are extracted from full-wave simulations. The far-field radiation patterns in both glass and air environments predicted by LW theory agree well with the ones obtained by full-wave simulations. We achieve a directive radiation pattern in glass environment with about 17.5 dB directivity and 1.05 degree beam-width at the operative free space wavelength of 1.55 μm, pointing at a direction orthogonal to the waveguide (broadside direction). We also show that the use of semiconductor corrugations facilitate electronic tuning of the radiation pattern via carrier injection.

© 2011 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: January 14, 2011
Revised Manuscript: March 8, 2011
Manuscript Accepted: April 11, 2011
Published: April 20, 2011

Qi Song, Salvatore Campione, Ozdal Boyraz, and Filippo Capolino, "Silicon-based optical leaky wave antenna with narrow beam radiation," Opt. Express 19, 8735-8749 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008). [CrossRef] [PubMed]
  2. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182–184 (2004). [CrossRef]
  3. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  4. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002). [CrossRef]
  5. Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett. 94(23), 231101 (2009). [CrossRef]
  6. C. K. Toth, “R&D of mobile LIDAR mapping and future trends,” in Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland, 2009).
  7. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008). [CrossRef] [PubMed]
  8. A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: a leaky wave characterization,” Phys. Rev. B 79(7), 075110 (2009). [CrossRef]
  9. E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express 17(12), 9879–9890 (2009). [CrossRef] [PubMed]
  10. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  11. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  12. L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double-injection electro-optic modulator with junction gate control,” J. Appl. Phys. 63(6), 1831–1839 (1988). [CrossRef]
  13. C. K. Tang and G. T. Reed, “Highly efficient optical-phase modulator in SOI waveguides,” Electron. Lett. 31(6), 451–452 (1995). [CrossRef]
  14. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009). [CrossRef] [PubMed]
  15. S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002). [CrossRef]
  16. P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006). [CrossRef]
  17. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007), pp. 11.11–11.56.
  18. F. Capolino, D. R. Jackson, and D. R. Wilton, “Field representation in periodic artificial materials excited by a source,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 12.11.
  19. S. Campione and F. Capolino, “Linear and Planar Periodic Arrays of Metallic Nanospheres: Fabrication, Optical Properties and Applications,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific Publishing, 2011).
  20. D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook, C. A. Balanis, ed. (Wiley, 2008), pp. 325–367.
  21. R. E. Collin, Antennas and Radiowave Propagation (McGraw Hill, 1985), p. 164.
  22. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005), p. 286.
  23. E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2008), p. 418.
  24. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), p. 424.
  25. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  26. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  27. O. Boyraz, X. Sang, E.-K. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE 7212, 72120U (2009). [CrossRef]
  28. W. P. Dumke, “Minority-carrier injection and storage into a heavily doped emitter—approximate solution for Auger recombination,” Solid-State Electron. 24(2), 155–157 (1981). [CrossRef]
  29. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24(3), 1433–1439 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited