OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8774–8780

Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber

Ji Cheng, Jennifer H. Lee, Ke Wang, Chris Xu, Kim G. Jespersen, Martin Garmund, Lars Grüner-Nielsen, and Dan Jakobsen  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8774-8780 (2011)
http://dx.doi.org/10.1364/OE.19.008774


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate generation of Cerenkov radiation at 850 nm in a higher-order-mode (HOM) fiber. The LP02 mode in this solid, silica-based fiber has anomalous dispersion from 690 nm to 810 nm. Cerenkov radiation with 3 nJ pulse energy is generated in this module, exhibiting 60% energy conversion efficiency from the input. The HOM fiber provides a valuable fiber platform for nonlinear wavelength conversion with pulse energies in-between index-guided silica-core photonic crystal fibers and air-core photonic bandgap fibers.

© 2011 OSA

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 18, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 29, 2011
Published: April 20, 2011

Citation
Ji Cheng, Jennifer H. Lee, Ke Wang, Chris Xu, Kim G. Jespersen, Martin Garmund, Lars Grüner-Nielsen, and Dan Jakobsen, "Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber," Opt. Express 19, 8774-8780 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986). [CrossRef] [PubMed]
  2. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  3. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001). [CrossRef]
  4. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fiber-based source of femtosecond pulses tunable from 1.0 to 1.3um,” Electron. Lett. 40(24), 1523 (2004). [CrossRef]
  5. N. Nishizawa, Y. Ito, and T. Goto, “0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber,” IEEE Photon. Technol. Lett. 14(7), 986–988 (2002). [CrossRef]
  6. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004). [CrossRef] [PubMed]
  7. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  8. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31(9), 1328–1330 (2006). [CrossRef] [PubMed]
  9. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  10. N. Ishii, C. Y. Teisset, S. Köhler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036617 (2006). [CrossRef] [PubMed]
  11. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett. 31(8), 1148–1150 (2006). [CrossRef] [PubMed]
  12. A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, and A. M. Zheltikov, “Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: a promising fiber light source for nonlinear Raman microspectroscopy,” Opt. Express 14(22), 10645–10651 (2006). [CrossRef] [PubMed]
  13. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006). [CrossRef] [PubMed]
  14. K. G. Jespersen, T. Le, L. Grüner-Nielsen, D. Jakobsen, M. E. V. Pederesen, M. B. Smedemand, S. R. Keiding, and B. Palsdottir, “A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers,” Opt. Express 18(8), 7798–7806 (2010). [CrossRef] [PubMed]
  15. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007). [CrossRef] [PubMed]
  16. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008). [CrossRef]
  17. J. H. Lee, J. van Howe, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber,” Opt. Lett. 32(9), 1053–1055 (2007). [CrossRef] [PubMed]
  18. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000). [CrossRef]
  19. M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004). [CrossRef] [PubMed]
  20. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  21. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33(6), 621–623 (2008). [CrossRef] [PubMed]
  22. F. Luan, J. C. Knight, P. S. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12(5), 835–840 (2004). [CrossRef] [PubMed]
  23. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36(4), 540–542 (2011). [CrossRef] [PubMed]
  24. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007). [CrossRef] [PubMed]
  25. J. M. Dudley and J. R. Taylor, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), Chapter 3, 33–51.
  26. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002). [CrossRef]
  27. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  28. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited