OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8781–8794

Improved arrayed-waveguide-grating layout avoiding systematic phase errors

Nur Ismail, Fei Sun, Gabriel Sengo, Kerstin Wörhoff, Alfred Driessen, René M. de Ridder, and Markus Pollnau  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8781-8794 (2011)
http://dx.doi.org/10.1364/OE.19.008781


View Full Text Article

Enhanced HTML    Acrobat PDF (1893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.

© 2011 OSA

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 18, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: April 17, 2011
Published: April 20, 2011

Citation
Nur Ismail, Fei Sun, Gabriel Sengo, Kerstin Wörhoff, Alfred Driessen, René M. de Ridder, and Markus Pollnau, "Improved arrayed-waveguide-grating layout avoiding systematic phase errors," Opt. Express 19, 8781-8794 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988). [CrossRef]
  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990). [CrossRef]
  3. C. Dragone, “An N x N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991). [CrossRef]
  4. N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “Integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35(16), 2741–2743 (2010). [CrossRef] [PubMed]
  5. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  6. C. D. Lee, W. Chen, Q. Wang, Y.-J. Chen, W. T. Beard, D. Stone, R. F. Smith, R. Mincher, and I. R. Stewart, “The role of photomask resolution on the performance of arrayed-waveguide grating devices,” J. Lightwave Technol. 19(11), 1726–1733 (2001). [CrossRef]
  7. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” J. Lightwave Technol. 15(11), 2107–2113 (1997). [CrossRef]
  8. R. Adar, C. H. Henry, C. Dragone, R. C. Kistler, and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993). [CrossRef]
  9. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  10. F. M. Soares, W. Jiang, N. K. Fontaine, S. W. Seo, J. H. Baek, R. G. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in Proceedings of the National Fiber Optic Engineers Conference (Optical Society of America, Washington DC, 2008), paper JThA23.
  11. R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008). [CrossRef]
  12. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems,” J. Lightwave Technol. 20(5), 850–853 (2002). [CrossRef]
  13. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116(3), 434–442 (2001). [CrossRef] [PubMed]
  14. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited