OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8815–8820

A periodically coupled plasmon nanostructure for refractive index sensing

Jayson L. Briscoe and Sang-Yeon Cho  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8815-8820 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present unique characteristics of subwavelength surface plasmon polaritons in a periodically coupled nanowell structure. The nanowell structure offers high quality internal surface plasmon resonance for sensing applications. Calculated FWHM of the transmission peak is 6 nm and the optical transmission is close to 100% at the resonant wavelength of 815.8 nm. The highly concentrated polaritons in the nanowell are sensitive to surface changes providing a sensitivity of 4800% RIU−1 for optical sensing applications.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optics at Surfaces

Original Manuscript: January 24, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 24, 2011
Published: April 21, 2011

Jayson L. Briscoe and Sang-Yeon Cho, "A periodically coupled plasmon nanostructure for refractive index sensing," Opt. Express 19, 8815-8820 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Campion and R. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998). [CrossRef]
  2. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006). [CrossRef] [PubMed]
  3. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004). [CrossRef]
  4. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  5. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25(6), 372–374 (2000). [CrossRef]
  6. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988),Chap. 8.
  8. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6(3), 122–124 (1981). [CrossRef] [PubMed]
  9. E. Cubukcu, N. Yu, E. Smythe, L. Diehl, K. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quant. Electron. 14(6), 1448–1461 (2008). [CrossRef]
  10. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duayne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. 112, 13958–13963 (2008).
  11. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004). [CrossRef] [PubMed]
  12. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  13. L. Pang, G. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007). [CrossRef]
  14. F. Le, D. W. Brandt, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef]
  15. H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, “Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration,” J. Appl. Phys. 106(12), 124314 (2009). [CrossRef]
  16. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009). [CrossRef]
  17. Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009). [CrossRef]
  18. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  19. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997). [CrossRef] [PubMed]
  20. C. V. I. Melles Griot Catalog, (CVIMG, New Mexico 2009).
  21. A. Bruckbauer, D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman, “An addressable antibody nanoarray produced on a nanostructured surface,” J. Am. Chem. Soc. 126(21), 6508–6509 (2004). [CrossRef] [PubMed]
  22. C.-T. Li, T.-J. Yen, and H.-F. Chen, “A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors,” Opt. Express 17(23), 20771–20776 (2009). [CrossRef] [PubMed]
  23. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006). [CrossRef] [PubMed]
  24. A. Parisi, A. C. Cino, A. C. Busacca, M. Cherchi, and S. Riva-Sanseverino, “Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate,” Sensors 8(11), 7113–7124 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited