OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8821–8829

Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity

Bui Thanh Tung, Dzung Viet Dao, Taro Ikeda, Yoshiaki Kanamori, Kazuhiro Hane, and Susumu Sugiyama  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8821-8829 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports the theoretical and experimental investigations on the strain sensing effect of a two dimensions (2D) photonic crystal (PhC) nanocavity resonator. By using the finite element method (FEM) and finite difference time domain (FDTD) simulations, the strain sensitivity of a high quality factor PhC nanocavity was calculated. Linear relationships between the applied strain and the shift in the resonant wavelength of the cavity were obtained. A single-defect silicon (Si) PhC cavity was fabricated, and measurements of the strain sensitivity were performed. Good agreement between the experimental and simulation results was observed.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.4685) Optical devices : Optical microelectromechanical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 28, 2011
Revised Manuscript: March 9, 2011
Manuscript Accepted: March 30, 2011
Published: April 21, 2011

Bui Thanh Tung, Dzung Viet Dao, Taro Ikeda, Yoshiaki Kanamori, Kazuhiro Hane, and Susumu Sugiyama, "Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity," Opt. Express 19, 8821-8829 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  2. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  3. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008). [CrossRef]
  4. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004). [CrossRef]
  5. T. Sünner, T. Stichel, S. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92(26), 261112 (2008). [CrossRef]
  6. Z. Xu, L. Cao, C. Gu, Q. He, and G. Jin, “Micro displacement sensor based on line-defect resonant cavity in photonic crystal,” Opt. Express 14(1), 298–305 (2006). [CrossRef] [PubMed]
  7. D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008). [CrossRef]
  8. C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009). [CrossRef] [PubMed]
  9. B. Li and C. Lee, “Computational study of NEMS diaphragm sensor using triple nano-ring resonator,” Procedia Eng. 5, 1418–1421 (2010). [CrossRef]
  10. T. T. Mai, F. Hsiao, C. Lee, W. Xiang, C. Chen, and W. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011). [CrossRef]
  11. T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84(5-8), 1450–1453 (2007). [CrossRef]
  12. T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express 17(3), 1518–1526 (2009). [CrossRef] [PubMed]
  13. D. V. Dao, T. T. Bui, K. Nakamura, V. T. Dau, T. Yamada, K. Hata, and S. Sugiyama, “Towards highly sensitive strain sensing based on nanostructured materials,” Adv. Nat. Sci: Nanosci. Nanotechnol. 1(4), 045012 (2010). [CrossRef]
  14. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  15. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  17. B. T. Tung, H. M. Nguyen, D. V. Dao, S. Rogge, H. Salemink, and S. Susumu, “Strain sensitivity of a modified single-defect photonic crystal nanocavity for mechanical sensing,” in Sensors, 2010 IEEE, pp. 2585–2588, (Hawaii, Nov. 2010).
  18. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  19. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163 (2002). [CrossRef]
  20. F. Shimokawa and H. Kuwano, “New high-power fast atom beam source,” J. Vac. Sci. Technol. A 12(5), 2739 (1994). [CrossRef]
  21. O. Svelto, Principles of Lasers, 4th ed. (Springer, 2009), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited