OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8830–8838

Measurement of the transmission of the atmosphere from 0.2 to 2 THz

Yihong Yang, Alisha Shutler, and D. Grischkowsky  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8830-8838 (2011)
http://dx.doi.org/10.1364/OE.19.008830


View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The attenuation of electromagnetic wave propagation in the clear atmosphere from low frequencies up to 2 THz is mainly caused by water vapor. Although there have been many numerical simulations and excellent early sub-mm and far-infrared measurements of this attenuation, there has remained controversy about the background absorption in the most promising windows of transparency below 1 THz. Here, we report an accurate terahertz time-domain spectroscopy (THz-TDS) characterization of water vapor from 0.2 to 2 THz. Our results agree with the previous predicted and measured attenuations for the weak water lines, but show more attenuation for the relatively transparent windows between these lines.

© 2011 OSA

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(300.6495) Spectroscopy : Spectroscopy, teraherz
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 4, 2011
Revised Manuscript: April 4, 2011
Manuscript Accepted: April 16, 2011
Published: April 21, 2011

Citation
Yihong Yang, Alisha Shutler, and D. Grischkowsky, "Measurement of the transmission of the atmosphere from 0.2 to 2 THz," Opt. Express 19, 8830-8838 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8830


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A., Deepak, T.D. Wilkerson, and L. H. Ruhnke, eds., Atmospheric Water Vapor (Academic Press, 1980). This book is the Proceedings of the International Workshop on Atmospheric Water Vapor, Vail, Colorado, September 11–13, 1979.
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  3. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antenn. Propag. 55(11), 2944–2956 (2007). [CrossRef]
  4. D. E. Burch, and D. A. Gryvnak, “Continuum Absorption by Water Vapor in the infrared and Millimeter Regions,” in Proceedings of the International Workshop on Atmospheric Water Vapor, Vail, Colorado, September 11–13, (1979), pp. 47–76
  5. Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov, and L. E. Fedosyev, “Measurement of the atmospheric absorption of radio waves in the range 1.36-3.0 mm,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 9, 627–644 (1966).
  6. R. L. Frenkel and D. Woods, “The microwave absorption by H2O vapor and its mixtures with other gases between 100 and 300 Gc/s,” Proc. IEEE 54(4), 498–505 (1966). [CrossRef]
  7. A. W. Straiton, and C. W. Tolbert, “Anomalies in the Absorption of Radio Waves by Atmospheric Gases,” Proc. IRE 48, 898–903 (1960).
  8. V. Ya. Ryadov and N. I. Furashov, “Investigation of the spectrum of radiowave absorption by atmospheric water vapor in the 1.15 to 1.5 mm range,” Radio Phys. Quantum Electron. 15(10), 1124–1128 (1972). [CrossRef]
  9. D. E. Burch, D. A. Gryvnak, and R. R. Patty, “Absorption of infrared radiation by CO2 and H2O. experimental techniques,” J. Opt. Soc. Am. 57(7), 885–895 (1967). [CrossRef]
  10. D. E. Burch, “Absorption of infrared radiant energy by CO2 and H2O. III. absorption by H2O between 0.5 and 36 cm−1,” J. Opt. Soc. Am. 58(10), 1383–1394 (1968). [CrossRef]
  11. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989). [CrossRef] [PubMed]
  12. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990). [CrossRef]
  13. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and demiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  14. T. Yuan, H. B. Liu, J. Z. Xu, F. Al-Douseri, Y. Hu, and X.-C. Zhang, “Terahertz time-domain spectroscopy of the atmosphere with different humidity,” Proc. SPIE 5070, 28–37 (2003). [CrossRef]
  15. S. Wohnsiedler, M. Theuer, M. Herrmann, S. Islam, J. Jonuscheit, R. Beigang, and F. Hase, “Simulation and experiment of terahertz stand-off detection,” Proc. SPIE 7215, 72150H, 72150H-8 (2009). [CrossRef]
  16. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited