OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8847–8854

Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS)

Chia-Chun Chiang, Ming-Tzo Wei, Yin-Quan Chen, Pei-Wen Yen, Yi-Chiao Huang, Jun-Yeh Chen, Olivier Lavastre, Husson Guillaume, Darsy Guillaume, and Arthur Chiou  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8847-8854 (2011)
http://dx.doi.org/10.1364/OE.19.008847


View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used oscillatory optical tweezers to investigate the microrheological properties of Sodium polystyrene sulfonate (NaPSS; Mw = 70kDa) polymer solutions with different concentrations from 0.001mM to 10mM in terms of elastic modulus G’(ω) and loss modulus G”(ω) as a function of angular frequency (ω) in the range of 6rad/s to 6000rad/s. The viscoelastic properties (including zero-shear-rate viscosity, crossing frequency and transition frequency) as a function of polymer concentration, deduced from our primary data, reveal the subtle structural changes in the polymer solutions as the polymer concentration increases from dilute to semi-dilute regimes, passing through the critical micelle formation concentration and the polymer overlapping concentration. The experimental results are consistent with the Maxwell model in some regime, and with the Rouse model in other, indicating the transient network character and the micelles formation in different regimes.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.5470) Materials : Polymers
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 1, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 18, 2011
Published: April 21, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Chia-Chun Chiang, Ming-Tzo Wei, Yin-Quan Chen, Pei-Wen Yen, Yi-Chiao Huang, Jun-Yeh Chen, Olivier Lavastre, Husson Guillaume, Darsy Guillaume, and Arthur Chiou, "Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS)," Opt. Express 19, 8847-8854 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Boris and R. H. Colby, “Rheology of sulfonated polystyrene solutions,” Macromolecules 31(17), 5746–5755 (1998). [CrossRef]
  2. K. Lienkamp, I. Schnell, F. Groehn, and G. Wegner, “Polymerization of styrene sulfonate ethyl ester by ATRP: synthesis and characterization of macromonomers for suzuki polycondensation,” Macromol. Chem. Phys. 207(22), 2066–2073 (2006). [CrossRef]
  3. T. Takasu, “[Treatment of hyperkalemia associated with renal insufficiency--clinical effects and side reactions of positive-ion-exchange resins, sodium polystyrene sulfonate (Kayexalate)],” Nippon Rinsho 28(7), 1941–1946 (1970). [PubMed]
  4. B. C. Herold, N. Bourne, D. Marcellino, R. Kirkpatrick, D. M. Strauss, L. J. Zaneveld, D. P. Waller, R. A. Anderson, C. J. Chany, B. J. Barham, L. R. Stanberry, and M. D. Cooper, “Poly(sodium 4-styrene sulfonate): an effective candidate topical antimicrobial for the prevention of sexually transmitted diseases,” J. Infect. Dis. 181(2), 770–773 (2000). [CrossRef] [PubMed]
  5. M. Sedlák, “The ionic strength dependence of the structure and dynamics of polyelectrolyte solutions as seen by light scattering: the slow mode dilemma,” J. Chem. Phys. 105(22), 10123–10133 (1996). [CrossRef]
  6. M. Sedlák and E. J. Amis, “Dynamics of moderately concentrated salt‐free polyelectrolyte solutions: Molecular weight dependence,” J. Chem. Phys. 96(1), 817–825 (1992). [CrossRef]
  7. M. Sedlák and E. J. Amis, “Concentration and molecular weight regime diagram of salt‐free polyelectrolyte solutions as studied by light scattering,” J. Chem. Phys. 96(1), 826–834 (1992). [CrossRef]
  8. M. Sedlák, “Mechanical properties and stability of multimacroion domains in polyelectrolyte solutions,” J. Chem. Phys. 116(12), 5236–5245 (2002). [CrossRef]
  9. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007). [CrossRef]
  10. G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, “Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements,” J. Opt. A, Pure Appl. Opt. 11(3), 034016 (2009). [CrossRef]
  11. J. H. E. Hone, A. M. Howe, and T. Cosgrove, “A small-angle neutron scattering study of the structure of gelatin/polyelectrolyte complexes,” Macromolecules 33(4), 1206–1212 (2000). [CrossRef]
  12. S. Batzill, R. Luxemburger, R. Deike, and R. Weber, “Structural and dynamical properties of aqueous suspensions of NaPSS (HPSS) at very low ionic strength,” Eur. Phys. J. B 1(4), 491–501 (1998). [CrossRef]
  13. J. R. Gillmor, R. W. Connelly, R. H. Colby, and J. S. Tan, “Effect of sodium poly (styrene sulfonate) on thermoreversible gelation of gelatin,” J. Polym. Sci., B, Polym. Phys. 37(16), 2287–2295 (1999). [CrossRef]
  14. I. Astafieva, K. Khougaz, and A. Eisenberg, “Micellization in block polyelectrolyte solutions. 2. fluorescence study of the critical micelle concentration as a function of soluble block length and salt concentration,” Macromolecules 28(21), 7127–7134 (1995). [CrossRef]
  15. I. Astafieva, X. F. Zhong, and A. Eisenberg, “Critical micellization phenomena in block polyelectrolyte solutions,” Macromolecules 26(26), 7339–7352 (1993). [CrossRef]
  16. H.-H. Chu, Y.-S. Yeo, and K. S. Chuang, “Entry in emulsion polymerization using a mixture of sodium polystyrene sulfonate and sodium dodecyl sulfate as the surfactant,” Polymer (Guildf.) 48(8), 2298–2305 (2007). [CrossRef]
  17. T. Cosgrove, J. H. E. Hone, A. M. Howe, and R. K. Heenan, “A small-angle neutron scattering study of the structure of gelatin at the surface of polystyrene latex particles,” Langmuir 14(19), 5376–5382 (1998). [CrossRef]
  18. M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13(15), 5798–5806 (2005). [CrossRef] [PubMed]
  19. M.-T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008). [CrossRef] [PubMed]
  20. L. A. Hough and H. D. Ou-Yang, “Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: relaxation and structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 031802 (2006). [CrossRef] [PubMed]
  21. B. R. Dasgupta, S.-Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 051505 (2002). [CrossRef] [PubMed]
  22. M. S. Green and A. V. Tobolsky, “A new approach to the theory of relaxing polymeric media,” J. Chem. Phys. 14(2), 80–92 (1946). [CrossRef]
  23. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, 1970).
  24. J. M. Dealy and R. G. Larson, Structure and Rheology of Molten Polymers: From Structure to Flow Behaviour and Back Again (Hanser Publishers, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited