OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8930–8938

Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (µFBG)

Guanghui Wang, Perry Ping Shum, Ho-pui Ho, Xia Yu, Dora Juan Juan Hu, Ying Cui, Limin Tong, and Chinlon Lin  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8930-8938 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel micro-fiber Bragg grating (µFBG) sensor that takes advantage of the degeneracy of stop-band and rapid emergence of spectral modes when an effective phase shift occurs. The phase shift can be enabled by a range of perturbations in a central segment of the grating, including monolayer immobilization of bio-molecules or change in refractive index in the surrounding, thereby constituting the possibility of a highly sensitive sensor with the merit of scalable performance. The use of µFBG ensures strong evanescent field coupling to the surrounding in order to maximize signal transduction. Simulation results indicate very favorable sensor signal characteristics such as large wavelength shift and sharp reflection dips. A general relation between the peak position within the stop-band and the amount of effective phase shift is also provided, and may generally serve as helpful guideline for FBG sensor design. A typical µFBG sensor device may detect surface protein/DNA adsorption with limit-of-detection (LOD) as low as 3.3 pg.mm−2 for surface mass density and 51.8 fg for total mass. For refractive index (RI) sensing, the LOD is 2.5*10−6 refractive index unit (RIU).

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(130.3990) Integrated optics : Micro-optical devices

ToC Category:

Original Manuscript: November 30, 2010
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 22, 2011
Published: April 22, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Guanghui Wang, Perry Ping Shum, Ho-pui Ho, Xia Yu, Dora Juan Juan Hu, Ying Cui, Limin Tong, and Chinlon Lin, "Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (µFBG)," Opt. Express 19, 8930-8938 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  3. D. Xiaowei and Z. Ruifeng, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010). [CrossRef]
  4. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004). [CrossRef]
  5. D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009). [CrossRef]
  6. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  7. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express 18(25), 26345–26350 (2010). [CrossRef] [PubMed]
  8. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  10. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  11. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994). [CrossRef]
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008). [CrossRef] [PubMed]
  13. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995). [CrossRef]
  14. J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994). [CrossRef]
  15. L. Xia, P. Shum, and C. Lu, “Phase-shifted bandpass filter fabrication through CO2 laser irradiation,” Opt. Express 9, 652–657 (2001).
  16. M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000). [CrossRef]
  17. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994). [CrossRef] [PubMed]
  18. Z. Lai, Y. Wang, N. Allbritton, G. P. Li, and M. Bachman, “Label-free biosensor by protein grating coupler on planar optical waveguides,” Opt. Lett. 33(15), 1735–1737 (2008). [CrossRef] [PubMed]
  19. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006). [CrossRef] [PubMed]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  21. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  22. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  23. L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972). [CrossRef]
  24. S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989). [CrossRef] [PubMed]
  25. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008). [CrossRef] [PubMed]
  26. H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited