OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8939–8953

Comparison of numerical methods in near-field computation for metallic nanoparticles

Mirza Karamehmedović, Roman Schuh, Vladimir Schmidt, Thomas Wriedt, Christian Matyssek, Wolfram Hergert, Andrei Stalmashonak, Gerhard Seifert, and Ondrej Stranik  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8939-8953 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Four widely used electromagnetic field solvers are applied to the problem of scattering by a spherical or spheroidal silver nanoparticle in glass. The solvers are tested in a frequency range where the imaginary part of the scatterer refractive index is relatively large. The scattering efficiencies and near-field results obtained by the different methods are compared to each other, as well as to recent experiments on laser-induced shape transformation of silver nanoparticles in glass.

© 2011 OSA

OCIS Codes
(290.0290) Scattering : Scattering
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Physical Optics

Original Manuscript: January 4, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 16, 2011
Published: April 22, 2011

Mirza Karamehmedović, Roman Schuh, Vladimir Schmidt, Thomas Wriedt, Christian Matyssek, Wolfram Hergert, Andrei Stalmashonak, Gerhard Seifert, and Ondrej Stranik, "Comparison of numerical methods in near-field computation for metallic nanoparticles," Opt. Express 19, 8939-8953 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.-Leipzig 330, 377–445 (1908). [CrossRef]
  2. A. Taflove and S. C. Hagness, Computational Electrodynamics, Third Edition. (Artech House 2005).
  3. J. Niegemann, M. Konig, K. Stannigel, and K. Busch, “Higher order time-domain methods for the analysis of nano-photonic systems,” Photon. Nanostructures 7(1), 2–11 (2009). [CrossRef]
  4. P. Monk, Finite Element Method for Maxwell’s Equations, (Oxford, 2006).
  5. A. C. Cangellaris and D. B. Wright, “Analysis of the numerical error caused by stair-stepped approximation of a conduction boundary in FDTD simulations of electromagnetic phenomena,” IEEE Trans. Antenn. Propag. 39(10), 1518–1525 (1991). [CrossRef]
  6. D. W. Lynch and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals,” in Handbook of Optical Constants of Solids, vol. 1, E. D. Palik, ed (Academic, San Diego, 1985).
  7. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007). [CrossRef]
  8. A. Doicu, T. Wriedt and Yu. Eremin, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources: Theory and Programs (Springer 2006).
  9. A. Doicu and T. Wriedt, “Near-field computation using the null-field method,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 466–473 (2010). [CrossRef]
  10. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  11. B. T. Draine and P. J. Flatau, “User Guide to the Discrete Dipole Approximation Code DDSCAT 7.1”, http://arXiv.org/abs/1002.1505v1 (2010).
  12. COMSOL Multiphysics demonstration CD-ROM can be requested at http://www.comsol.com
  13. C. Hafner and L. Bomholt, The 3D electromagnetic wave simulator (Wiley 1993).
  14. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94(3), 459–465 (2009). [CrossRef]
  15. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009). [CrossRef]
  16. A. Stalmashonak, C. Matyssek, O. Kiriyenko, W. Hergert, H. Graener, and G. Seifert, “Preparing large-aspect-ratio prolate metal nanoparticles in glass by simultaneous femtosecond multicolor irradiation,” Opt. Lett. 35(10), 1671–1673 (2010). [CrossRef] [PubMed]
  17. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19(9), 1505–1509 (1980). [CrossRef] [PubMed]
  18. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points”, http://xxx.arxiv.org/abs/astro-ph/0403082 (2004).
  19. M. A. Yurkin, “Discrete dipole simulations of light scattering by blood cells”, Dissertation (2007), ISBN 90–5776–169–6

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited