OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8962–8972

Nearly perfect absorption in intrinsically low-loss grating structures

Ruey-Lin Chern and Wei-Ting Hong  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8962-8972 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5975 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feature of enhanced absorption in two-layered grating structures is theoretically investigated. The underlying structures make the most use of resonance mechanism to achieve a nearly perfect absorption in an intrinsically low-loss medium. For standalone gratings, the maximum absorption efficiency is shown to be 50%, which is attributed to the coupling of short range (bonding) or long range (antibonding) surface plasmons with cavity resonances. By attaching a dielectric slab on top or bottom to the metallic grating, the maximum absorption efficiency can be raised to nearly 100%. The presence of guided waves in the dielectric slab causes the strong concentration of fields and reinforces the absorption to its extreme value. The efficient absorption mechanism is illustrated with the pattern of resonance fields and the distribution of power loss density. A phenomenological theory is also used to characterize the absorption anomaly in terms of complex pole and zero.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.1030) Spectroscopy : Absorption

ToC Category:
Diffraction and Gratings

Original Manuscript: March 14, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: April 14, 2011
Published: April 22, 2011

Ruey-Lin Chern and Wei-Ting Hong, "Nearly perfect absorption in intrinsically low-loss grating structures," Opt. Express 19, 8962-8972 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005). [CrossRef]
  2. A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74, 073408 (2006). [CrossRef]
  3. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008). [CrossRef] [PubMed]
  4. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  5. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008). [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  7. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008). [CrossRef]
  8. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  9. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  10. L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009). [CrossRef] [PubMed]
  11. N. C. Panoiu and R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  12. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009). [CrossRef] [PubMed]
  13. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009). [CrossRef]
  14. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  15. D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976). [CrossRef]
  16. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976). [CrossRef]
  17. E. G. Loewen and M. Nevière, “Dielectric coated gratings: a curious property,” Appl. Opt. 16, 3009–3011 (1977). [CrossRef] [PubMed]
  18. D. K. Gramotnev, “Anomalous absorption of TM electromagnetic waves by an ultrathin layer: optical analog of liquid friction,” Opt. Lett. 23, 91–93 (1998). [CrossRef]
  19. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef] [PubMed]
  20. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009). [CrossRef]
  21. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  22. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]
  23. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009). [CrossRef]
  24. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  25. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991). [CrossRef]
  26. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  27. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  28. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005). [CrossRef] [PubMed]
  29. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000). [CrossRef]
  30. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  31. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  32. R. L. Chern, Y. T. Chen, and H. Y. Lin, “Anomalous optical absorption in metallic gratings with subwavelength slits,” Opt. Express 18, 19510–19521 (2010). [CrossRef] [PubMed]
  33. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19, 415–424 (2011). [CrossRef] [PubMed]
  34. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982), Chap. 17, pp. 661–724.
  35. COMSOL Multiphysics 3.5a (2009).
  36. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  37. J. D. Jackson, Classical Electrodynamics , 3rd ed. (Wiley, 1999).
  38. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  39. C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003). [CrossRef]
  40. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003). [CrossRef]
  41. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  42. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  43. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How Holes Can Obscure the View: Suppressed Transmission through an Ultrathin Metal Film by a Subwavelength Hole Array,” Phys. Rev. Lett. 103, 203901 (2009). [CrossRef]
  44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  45. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  46. R. F. Harrington, Time-Harmonic Electromagnetic Fields , 2nd ed. (Wiley, 2001). [CrossRef]
  47. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000). [CrossRef]
  48. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Butterworth-Heinemann, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited