OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8973–8984

Chirped-pulse terahertz spectroscopy for broadband trace gas sensing

Eyal Gerecht, Kevin O. Douglass, and David F. Plusquellic  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8973-8984 (2011)
http://dx.doi.org/10.1364/OE.19.008973


View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of a broadband trace gas sensor based on chirp-pulse terahertz spectroscopy. The advent of newly developed solid state sources and sensitive heterodyne detectors for the terahertz frequency range have made it possible to generate and detect precise arbitrary waveforms at THz frequencies with ultra-low phase noise. In order to maximize sensitivity, the sample gas is first polarized using sub-μs chirped THz pulses and the free inductive decays (FIDs) are then detected using a heterodyne receiver. This approach allows for a rapid broadband multi-component sensing with low parts in 109 (ppb) sensitivities and spectral frequency accuracy of <20 kHz in real-time. Such a system can be configured into a portable, easy to use, and relatively inexpensive sensing platform.

© 2011 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: March 10, 2011
Manuscript Accepted: April 7, 2011
Published: April 22, 2011

Citation
Eyal Gerecht, Kevin O. Douglass, and David F. Plusquellic, "Chirped-pulse terahertz spectroscopy for broadband trace gas sensing," Opt. Express 19, 8973-8984 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Gerecht, D. Gu, L. You, and K. S. Yngvesson, “A passive heterodyne hot electron bolometer imager operating at 850 gigahertz,” IEEE Trans. Microw. Theory Tech. 56(5), 1083–1091 (2008). [CrossRef]
  2. I. R. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimetre spectral region with a compact solid state system,” Analyst (Lond.) 131(12), 1299–1307 (2006). [CrossRef]
  3. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007). [CrossRef]
  4. T. Uno and H. Tabata, “In situ measurement of Combustion Gas Using Terahertz Time Domain Spectroscopy Setup for Gas Phase Spectroscopy and Measurement of Solid Sample,” Jpn. J. Appl. Phys. 49(4), 04DL17 (2010). [CrossRef]
  5. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010). [CrossRef] [PubMed]
  6. I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett. 35(10), 1533–1535 (2010). [CrossRef] [PubMed]
  7. B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, “Measuring picosecond Isomerization kinetics via broadband microwave spectroscopy,” Science 320(5878), 924–928 (2008). [CrossRef] [PubMed]
  8. Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.
  9. Virginia Diodes, Inc, http://www.virginiadiodes.com/multipliers.htm .
  10. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf. 91(3), 287–295 (2005). [CrossRef]
  11. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf. 109(3), 458–467 (2008). [CrossRef]
  12. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “Absorption of the Water Vapor-Oxygen Mixture in the Region from 0.3 to 3.6 THz: Continuum and Magnetic Dipole Absorbance,” J. Mol. Spectrosc. 251(1-2), 203–209 (2008). [CrossRef]
  13. R. G. Pilston and J. U. White, “A Long Path Gas Absorption Cell,” J. Opt. Soc. Am. 44(7), 572 (1954). [CrossRef]
  14. D. C. Tobin, L. L. Strow, W. J. Lafferty, and W. B. Olson, “Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor,” Appl. Opt. 35(24), 4724–4734 (1996). [CrossRef] [PubMed]
  15. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005). [CrossRef]
  16. H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, “The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct. 742(1-3), 215–227 (2005). [CrossRef]
  17. B. N. Taylor and C. E. Kuyatt, C. E. NIST Tech. Note 1297 1994. The publication may be downloaded from: http://physics.nist.gov/Pubs/guidelines/contents.html
  18. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 377–385 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited