OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S2 — Mar. 14, 2011
  • pp: A118–A125

Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module

Noboru Yamada, Toshikazu Ijiro, Eiko Okamoto, Kentaro Hayashi, and Hideki Masuda  »View Author Affiliations

Optics Express, Vol. 19, Issue S2, pp. A118-A125 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1862 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have characterized antireflection (AR) moth-eye films placed on top of crystalline silicon photovoltaic (PV) modules by indoor and outdoor experiments and examined improvements in conversion efficiency. The effects of the ratio of diffuse solar irradiation to total solar irradiation (diffusion index) and incident angle on efficiency have been quantitatively analyzed. Using computer simulations, yearly efficiency improvements under different installation conditions have been projected. We have shown that the use of AR moth-eye films offers the best advantages. Further, vertical tilt angle installation leads to the highest efficiency improvement, whereas spectral matching with the PV modules influences the efficiency improvement.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: November 29, 2010
Revised Manuscript: January 10, 2011
Manuscript Accepted: January 15, 2011
Published: January 20, 2011

Noboru Yamada, Toshikazu Ijiro, Eiko Okamoto, Kentaro Hayashi, and Hideki Masuda, "Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module," Opt. Express 19, A118-A125 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010). [CrossRef]
  2. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.
  3. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010). [CrossRef]
  4. S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009). [CrossRef]
  5. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  6. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007). [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010). [CrossRef]
  8. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).
  9. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008). [CrossRef]
  10. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  11. P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  12. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).
  13. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999). [CrossRef]
  14. A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005). [CrossRef]
  15. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010). [CrossRef] [PubMed]
  16. T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007). [CrossRef]
  17. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009). [CrossRef]
  18. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).
  19. H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” Twenty-Sixth IEEE Photovol. Spec. Conf., 471–474 (1997).
  20. E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008). [CrossRef]
  21. C. Honsberg, and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .
  22. H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).
  23. W. Marion, and K. Urban, “National Solar Radiation Data Base,” http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited