OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S2 — Mar. 14, 2011
  • pp: A146–A156

Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole  »View Author Affiliations

Optics Express, Vol. 19, Issue S2, pp. A146-A156 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a new physical interpretation of scattering from plasmonic nanoparticles on high-index substrates. We demonstrate the excitation of different types of resonant modes on disk-shaped, Ag nanoparticles. At short wavelengths, the resonances are localised at the top of the particle, while at longer wavelengths they are localised at the Ag/substrate interface. We attribute the long wavelength resonances to geometric resonances of surface plasmon polaritons (SPPs) at the Ag/substrate interface. We show that particles that support resonant SPP modes have enhanced scattering cross-sections when placed directly on a high-index substrate; up to 7.5 times larger than that of a dipole scatterer with an equivalent free-space resonance. This has implications for designing scattering nanostructures for light trapping solar cells.

© 2011 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: November 29, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 21, 2011
Published: February 4, 2011

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, "Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates," Opt. Express 19, A146-A156 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Phys. Scr. 137A, 209–--242 (1986).
  4. H. Weyl, “Ausbreitung eiektromagnetischer, Wellen uber einem ebenen Leiter,” Ann. Phys. 4(21), 481–500 (1919). [CrossRef]
  5. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  6. C. Hägglund, Z. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  8. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin- Film Silicon Solar Cells,” Plasmonics 4(2), 107–113 (2009). [CrossRef]
  9. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998). [CrossRef]
  10. B. J. Soller and D. G. Hall, “Energy transfer at optical frequencies to silicon-based waveguiding structures,” J. Opt. Soc. Am. A 18(10), 2577–2584 (2001). [CrossRef]
  11. B. J. Soller and D. G. Hall, “Scattering enhancement from an array of interacting dipoles near a planar waveguide,” J. Opt. Soc. Am. B 19(10), 2437–2448 (2002). [CrossRef]
  12. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504–044508 (2006). [CrossRef]
  13. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  14. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  15. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley- Interscience, New York, 1983).
  16. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906 (2000). [CrossRef]
  17. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010). [CrossRef]
  18. S. Pillai, F. J. Beck, and K. R. Catchpole, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” (submitted).
  19. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010). [CrossRef]
  20. A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, “Scattering of light into silicon by spherical and hemispherical silver nanoparticles,” Opt. Lett. 35(1), 76–78 (2010). [CrossRef] [PubMed]
  21. Lumerical FDTD Solutions, www.lumerical.com .
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  23. M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66(2), 174–176 (1995). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  25. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009). [CrossRef]
  26. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  27. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” (submitted).
  28. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008). [CrossRef]
  29. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. (2007).
  30. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonantors for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics, 3 ed. (John Wiley and Sons, Inc., New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited