OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A219–A224

Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells

Chia-Hua Chang, Min-Hsiang Hsu, Ping-Chen Tseng, Peichen Yu, Wei-Lun Chang, Wen-Ching Sun, and Wei-Chih Hsu  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A219-A224 (2011)
http://dx.doi.org/10.1364/OE.19.00A219


View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Omnidirectional and broadband light harvesting is critical to photovoltaics due to the sun’s movement and its wide spectral range of radiation. In this work, we demonstrate distinctive indium-tin-oxide nanowhiskers that achieve superior angular and spectral characteristics for crystalline silicon solar cells using angle-resolved reflectance spectroscopy. The solar-spectrum weighted reflectance is well below 6% for incident angles of up to 70° and for the wavelength range between 400nm and 1000nm. As a result, the nanowhisker coated solar cell exhibits broadband quantum efficiency characteristics and enhanced short-circuit currents for large angles of incidence.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: January 12, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 11, 2011
Published: March 18, 2011

Citation
Chia-Hua Chang, Min-Hsiang Hsu, Ping-Chen Tseng, Peichen Yu, Wei-Lun Chang, Wen-Ching Sun, and Wei-Chih Hsu, "Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells," Opt. Express 19, A219-A224 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried contact solar cells: a review,” Prog. Photovolt. Res. Appl. 12(4), 253–281 (2004). [CrossRef]
  2. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997). [CrossRef]
  3. V. M. Aroutiounian, K. Martirosyan, and P. Soukiassian, “Almost zero reflectance of a silicon oxynitride/porous silicon double layer antireflection coating for silicon photovoltaic cells,” J. Phys. D Appl. Phys. 39(8), 1623–1625 (2006). [CrossRef]
  4. P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the ‘moth eye’ principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  5. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.) 29, 993–1009 (1982). [CrossRef]
  6. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  7. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999). [CrossRef]
  8. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010). [CrossRef] [PubMed]
  9. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  11. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  12. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  13. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y, 65450Y-14 (2007). [CrossRef]
  14. C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett. 94(5), 051114 (2009). [CrossRef]
  15. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009). [CrossRef]
  16. X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater. 14(11), 4490–4493 (2002). [CrossRef]
  17. Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys. 37(23), 3319–3322 (2004). [CrossRef]
  18. H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, and T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate,” J. Cryst. Growth 203(1-2), 136–140 (1999). [CrossRef]
  19. S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanisms of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys. 46(No. 6A), 3537–3544 (2007). [CrossRef]
  20. C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, “Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,” Opt. Express 17(23), 21250–21256 (2009). [CrossRef] [PubMed]
  21. ASTMG173–03, Standard tables for reference solar spectral irradiances, (ASTM International, West Conshohocken, Pennsylvania, 2005).
  22. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999). [CrossRef]
  23. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [CrossRef] [PubMed]
  24. J. L. Balenzategui and F. Chenlo, “Measurement and analysis of angular response of bare and encapsulated silicon solar cells,” Sol. Energy Mater. Sol. Cells 86(1), 53–83 (2005). [CrossRef]
  25. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(No. 6A), 3333–3336 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited