OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A234–A244

Metal-nitride-oxide-semiconductor light-emitting devices for general lighting

Y. Berencén, Josep Carreras, O. Jambois, J. M. Ramírez, J. A. Rodríguez, C. Domínguez, Charles E. Hunt, and B. Garrido  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A234-A244 (2011)
http://dx.doi.org/10.1364/OE.19.00A234


View Full Text Article

Enhanced HTML    Acrobat PDF (3663 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options.

© 2011 OSA

OCIS Codes
(150.2950) Machine vision : Illumination
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: January 20, 2011
Revised Manuscript: March 10, 2011
Manuscript Accepted: March 11, 2011
Published: March 29, 2011

Citation
Y. Berencén, Josep Carreras, O. Jambois, J. M. Ramírez, J. A. Rodríguez, C. Domínguez, Charles E. Hunt, and B. Garrido, "Metal-nitride-oxide-semiconductor light-emitting devices for general lighting," Opt. Express 19, A234-A244 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys. 30(Part 2, No. 10A), 1708–1711 (1991). [CrossRef]
  2. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997). [CrossRef]
  3. S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62(19), 2390–2393 (1993). [CrossRef]
  4. S. Nakamura, M. Senoh, N. Shin-ichi, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4059 (1996). [CrossRef]
  5. A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting (John Wiley and Sons, New York, 2002).
  6. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  7. Photonics 21 Strategic Research Agenda, http://www.photonics21.org/AboutPhotonics21/SRA.php
  8. Multi-Year Program Plan, Solid State Lighting Research and Development, US Department of Energy, http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2009_web.pdf
  9. Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, F. Ren, D. P. Norton, and S. J. Pearton, “Materials and Process Development for ZnMgO/ZnO Light-Emitting Diodes,” IEEE J. Quantum Electron. 14(4), 1048–1052 (2008). [CrossRef]
  10. W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 87–90 (2004). [CrossRef]
  11. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  12. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  13. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005). [CrossRef] [PubMed]
  14. T. P. Chen, Y. Liu, M. S. Tse, O. K. Tan, P. F. Ho, K. Y. Liu, D. Gui, and A. L. K. Tan, “Dielectric functions of Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 68(15), 153301 (2003). [CrossRef]
  15. J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electron. 45(1), 113–120 (2001). [CrossRef]
  16. M. Perálvarez, C. García, M. López, B. Garrido, J. Barreto, C. Domínguez, and J. A. Rodríguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112–051115 (2006). [CrossRef]
  17. O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526–063532 (2009). [CrossRef]
  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  19. M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology 20(40), 405201 (2009). [CrossRef] [PubMed]
  20. S. M. Sze, Physics of Semiconductor Devices 2nd ed. (Wiley, New York, 1981).
  21. S. Habermehl, R. T. Apodaca, and R. J. Kaplar, “On dielectric breakdown in silicon-rich silicon nitride thin films,” Appl. Phys. Lett. 94(1), 012905–012908 (2009). [CrossRef]
  22. W. Chandra and L. K. Ang, “Space charge limited current in a gap combined of free space and solid,” Appl. Phys. Lett. 96(18), 183501 (2010). [CrossRef]
  23. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008). [CrossRef]
  24. R. Hattori and J. Shirafuji, “Longitudinal electron drift mobility of hydrogenated amorphous silicon/silicon nitride multilayer structures revelealed by time-of-flight measurements,” Appl. Phys. Lett. 54(12), 1118–1120 (1989). [CrossRef]
  25. J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984). [CrossRef]
  26. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010). [CrossRef] [PubMed]
  27. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006). [CrossRef]
  28. K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, “Trap-Assisted Tunneling Hole Injection in SiO2: Experiment and Theory,” J. Exp. Theor. Phys. 109(5), 786–793 (2009). [CrossRef]
  29. M. Perálvarez, J. Josep Carreras, M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, and B. Garrido, “Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks,” Appl. Phys. Lett. 92(24), 241104 (2008). [CrossRef]
  30. CIE, (1995), Method of Measuring and Specifying Colour Rendering Properties of Light Sources Publication 13.3, Vienna: Commission Internationale de l'Eclairage, ISBN 978–3900734572.
  31. CIE, (1926), Commission internationale de l'Eclairage proceedings (Cambridge University Press, Cambridge) p. 1924.
  32. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010). [CrossRef]
  33. J. Carreras, J. M. Quintero, and C. E. Hunt, “Theoretical limits of natural light emulation,” Second CIE Expert Symposium on Appearance, Ghent, Belgium (2010).
  34. J. Carreras, J. Quintero, and C. E. Hunt, “Towards the Definition of New Visual Color Quality Representations,” Illuminating Engineering Society (IES) Meeting, Toronto, Canada, (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited