OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A245–A257

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets

David Chester, Peter Bermel, John D. Joannopoulos, Marin Soljacic, and Ivan Celanovic  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A245-A257 (2011)
http://dx.doi.org/10.1364/OE.19.00A245


View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class of materials known as cermets. While our approach is completely general, the most promising cermet candidate combines nanoparticles of silica and tungsten. We find that 4-layer silica-tungsten cermet selective solar absorbers can achieve thermal transfer efficiencies of 84.3% at 400 K, and 75.59% at 1000 K, exceeding comparable literature values. Three layer silica-tungsten cermets can also be used as selective emitters for InGaAsSb-based thermophotovoltaic systems, with projected overall system energy conversion efficiencies of 10.66% at 1000 K using realistic design parameters. The marginal benefit of adding more than 4 cermet layers is small (less than 0.26%, relative).

© 2011 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Thermophotovoltaic

History
Original Manuscript: January 27, 2011
Revised Manuscript: March 9, 2011
Manuscript Accepted: March 10, 2011
Published: March 29, 2011

Citation
David Chester, Peter Bermel, John D. Joannopoulos, Marin Soljacic, and Ivan Celanovic, "Design and global optimization of high-efficiency solar thermal systems with tungsten cermets," Opt. Express 19, A245-A257 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57, 4409–4414 (1985). [CrossRef]
  2. D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering (Taylor and Francis, 2000).
  3. F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285, 703–706 (1999). [CrossRef] [PubMed]
  4. G. Chen, Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005). [PubMed]
  5. H. H. Kolm, “Solar-battery power source,” Quarterly Progress Report (1956), Group 35, p. 13.
  6. B. Wedlock, “Thermo-photo-voltaic conversion,” Proc. IEEE 51, 694–698 (1963). [CrossRef]
  7. R. Black, P. Baldasaro, and G. Charache, “Thermophotovoltaics - development status and parametric considerations for power applications,” in International Conference on Thermoelectrics (IEEE, 1999), Vol. 18, pp. 639–644.
  8. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005). [CrossRef]
  9. N. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003). [CrossRef]
  10. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010). [CrossRef] [PubMed]
  11. G. Rybicki and A. Lightman, Radiative processes in astrophysics (John Wiley and Sons, 1979).
  12. C. Kennedy, “Review of mid- to high-temperature solar selective absorber materials,” Tech. Rep. TP-520-31267, National Renewable Energy Laboratory (2002).
  13. T. Sathiaraj, R. Thangarj, A. Sharbaty, M. Bhatnagar, and O. Agnihotri, “Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500° C,” Thin Solid Films 190, 241 (1990). [CrossRef]
  14. Q.-C. Zhang, “High efficiency Al-N cermet solar coatings with double cermet layer film structures,” J. Phys. D: Appl. Phys. 32, 1938–1944 (1999). [CrossRef]
  15. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis, University of Ghent, Belgium (2001).
  16. A. Rakic, A. Djurisic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity opto-electronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 1.
  18. R. Landauer, “Electrical conductivity in inhomogeneous media,” (American Institute of Physics, 1978), Vol. 40, pp. 2–45.
  19. P. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Suh, R. Lopez, and R. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2004). [CrossRef]
  20. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005). [CrossRef]
  21. S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev. 114, 104–115 (1959). [CrossRef]
  22. S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005). [CrossRef]
  23. M. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, 1994), pp. 51–67.
  24. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited