OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A295–A302

Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars

Yu-Hsuan Ho, Chung-Chun Liu, Shun-Wei Liu, Hsun Liang, Chih-Wei Chu, and Pei-Kuen Wei  »View Author Affiliations

Optics Express, Vol. 19, Issue S3, pp. A295-A302 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an antireflection structure consisted of irregular nanopillars to increase light extraction efficiency of flexible organic light-emitting devices. The nanopillars were made by imprinting the anodized aluminum oxide on polycarbonate substrates. The thermal viscosity effect formed the nanopillars with tapered shapes. Such nanopillars show excellent antireflection properties for a wide range of incident angles and wavelengths. The normal transmittance was improved from 85.5% to 95.9% for 150-nm-height nanopillars. The transmittance was greatly improved from 52.8% to 89.1% at 60° incident angle. With this antireflection structure, the device efficiency was improved 69% as compared to devices with flat substrates. Due to wide-angle antireflection, the image contrast ratio was also significantly improved .

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Light-Emitting Diodes

Original Manuscript: February 15, 2011
Manuscript Accepted: April 1, 2011
Published: April 11, 2011

Yu-Hsuan Ho, Chung-Chun Liu, Shun-Wei Liu, Hsun Liang, Chih-Wei Chu, and Pei-Kuen Wei, "Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars," Opt. Express 19, A295-A302 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913 (1987). [CrossRef]
  2. C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650 (2000). [CrossRef]
  3. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243 (2000). [CrossRef]
  4. J. J. Shiang, T. Faircloth, and A. Duggal, “Light extraction from OLED suing volumetric light scattering,” Proc. SPIE 5214, 268–276 (2004). [CrossRef]
  5. J. J. Shiang and A. R. Duggal, “Application of radiative transport theory to light extraction from organic light emitting diodes,” J. Appl. Phys. 95(5), 2880 (2004). [CrossRef]
  6. J. J. Shiang, T. J. Faircloth, and A. R. Duggal, “Experimental demonstration of increased organic light emitting device output via volumetric light scattering,” J. Appl. Phys. 95(5), 2889 (2004). [CrossRef]
  7. S. Möller and S. R. Forrest, “mproved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002). [CrossRef]
  8. L. Lin, T. K. Shia, and C. J. Chiu, “Silicon-processed plastic micro- pyramids for brightness enhancement applications,” J. Micro. Micro. 10, 395 (2000).
  9. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. 13(2), 123–127 (2001). [CrossRef]
  10. Y. R. Do, Y. C. Kim, Y. Song, C. Cho, H. Jeon, Y. J. Lee, S. Kim, and Y. H. Lee, “Enhanced Light Extraction from Organic Light-Emitting Diodes with 2D SiO2/SiNx Photonic Crystals,” Adv. Mater. 15(14), 1214–1218 (2003). [CrossRef]
  11. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004). [CrossRef]
  12. C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” J. Dis. Tech. 1(2), 248–266 (2005). [CrossRef]
  13. L. S. Hung and J. Mandathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001). [CrossRef]
  14. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80(20), 3853 (2002). [CrossRef]
  15. F. L. Wang, M. K. Fung, X. Jiang, C. S. Lee, and S. T. Lee, “Non-reflective black cathode in organic light-emitting diode,” Thin Solid Films 446(1), 143–146 (2004). [CrossRef]
  16. H. Aziz, Y. F. Liew, H. M. Grandin, and Z. D. Popovic, “Reduced reflectance cathode for organic light-emitting devices using metalorganic mixtures,” Appl. Phys. Lett. 83(1), 186 (2003). [CrossRef]
  17. H. M. Grandin, H. Aziz, S. Gardner, C. Jennings, A. J. Paine, P. R. Norton, and Z. D. Popovic, “Light Absorption Phenomena in Novel Low Reflectance Cathodes for Organic Light Emitting Devices Utilizing Metal-Organic Mixtures,” Adv. Mater. 15(23), 2021–2024 (2003). [CrossRef]
  18. S. H. Li, H. Liem, C. W. Chen, E. H. Wu, Z. Xu, and Y. Yang, “Stacked metal cathode for high-contrast-ratio polymeric light-emitting devices,” Appl. Phys. Lett. 86(14), 143514 (2005). [CrossRef]
  19. K. C. Lau, W. F. Xie, H. Y. Sun, C. S. Lee, and S. T. Lee, “Contrast improvement of organic light-emitting devices with Sm:Ag cathode,” Appl. Phys. Lett. 88(8), 083507 (2006). [CrossRef]
  20. X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes ” Z. H. Lu,” Appl. Phys. Lett. 85(3), 497 (2004). [CrossRef]
  21. Z. Y. Xie and L. S. Hung, “High-contrast organic light-emitting diodes,” Appl. Phys. Lett. 84(7), 1207 (2004). [CrossRef]
  22. K. Saxena, D. S. Mehta, V. K. Rai, R. Srivastava, G. Chauhan, and M. N. Kamalasanan, “Implementation of anti-reflection coating to enhance light out-coupling in organic light-emitting devices,” J. Lumin. 128(3), 525–530 (2008). [CrossRef]
  23. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  24. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176 (2007).
  25. P. B. Clapham and M. C. Hutley, ““Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  26. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  27. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76(13), 1650 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited