OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A319–A325

Ultraviolet electroluminescence from hybrid inorganic/organic ZnO/GaN/poly(3-hexylthiophene) dual heterojunctions

Yungting Chen, Hanyu Shih, Chunhsiung Wang, Chunyi Hsieh, Chihwei Chen, Yangfang Chen, and Taiyuan Lin  »View Author Affiliations

Optics Express, Vol. 19, Issue S3, pp. A319-A325 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on hybrid inorganic/organic n-ZnO nanorods/p-GaN thin film/poly(3-hexylthiophene)(P3HT) dual heterojunctions, the light emitting diode (LED) emits ultraviolet (UV) radiation (370 nm – 400 nm) and the whole visible light (400 nm −700 nm) at the low injection current density. Meanwhile, under the high injection current density, the UV radiation overwhelmingly dominates the room-temperature electroluminescence spectra, exponentially increases with the injection current density and possesses a narrow full width at half maximum less than 16 nm. Comparing electroluminescence with photoluminescence spectra, an enormously enhanced transition probability of the UV luminescence in the electroluminescence spectra was found. The P3HT layer plays an essential role in helping the UV emission from p-GaN material because of its hole-conductive characteristic as well as the band alignment with respect to p-GaN. With our new finding, the result shown here may pave a new route for the development of high brightness LEDs derived from hybrid inorganic/organic heterojuctions.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(160.4236) Materials : Nanomaterials

ToC Category:
Light-Emitting Diodes

Original Manuscript: February 17, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 14, 2011
Published: April 18, 2011

Yungting Chen, Hanyu Shih, Chunhsiung Wang, Chunyi Hsieh, Chihwei Chen, Yangfang Chen, and Taiyuan Lin, "Ultraviolet electroluminescence from hybrid inorganic/organic ZnO/GaN/poly(3-hexylthiophene) dual heterojunctions," Opt. Express 19, A319-A325 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ogino and M. Aoki, “Mechanism of Yellow Luminescence in GaN,” Jpn. J. Appl. Phys. 19(12), 2395–2405 (1980). [CrossRef]
  2. R. Birkhahn, M. Garter, and A. J. Steckl, “Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates,” Appl. Phys. Lett. 74(15), 2161–2163 (1999). [CrossRef]
  3. A. J. Steckl, M. Garter, D. S. Lee, J. Heikenfeld, and R. Birkhahn, “Blue emission from Tm-doped GaN electroluminescent devices,” Appl. Phys. Lett. 75(15), 2184–2186 (1999). [CrossRef]
  4. D. S. Lee, J. Heikenfeld, R. Birkhahn, M. Garter, B. K. Lee, and A. J. Steckl, “Voltage-controlled yellow or orange emission from GaN codoped with Er and Eu,” Appl. Phys. Lett. 76(12), 1525–1527 (2000). [CrossRef]
  5. D. S. Lee and A. J. Steckl, “Enhanced blue and green emission in rare-earth-doped GaN electroluminescent devices by optical photopumping,” Appl. Phys. Lett. 81(13), 2331–2333 (2002). [CrossRef]
  6. S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004). [CrossRef] [PubMed]
  7. B. Claflin, D. C. Look, S. J. Park, and G. Cantwell, “Persistent n-type photoconductivity in p-type ZnO,” J. Cryst. Growth 287(1), 16–22 (2006). [CrossRef]
  8. Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, “Observation of 430 nm electroluminescence from ZnO/GaN heterojunction lightemitting diodes,” Appl. Phys. Lett. 83(14), 2943–2945 (2003). [CrossRef]
  9. W. I. Park and G. C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004). [CrossRef]
  10. D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode,” Appl. Phys. Lett. 88(14), 141918 (2006). [CrossRef]
  11. M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88(20), 202105 (2006). [CrossRef]
  12. M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee, and J. M. Myoung, “ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes,” Small 3, 568–572 (2007). [CrossRef] [PubMed]
  13. E. Lai, W. Kim, and P. Yang, “Vertical Nanowire Array-Based Light Emitting Diodes,” Nano Res. 1(2), 123–128 (2008). [CrossRef]
  14. J. Y. Lee, J. H. Lee, H. S. Kim, C. H. Lee, H. S. Ahn, H. K. Cho, Y. Y. Kim, B. H. Kong, and H. S. Lee, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films 517(17), 5157–5160 (2009). [CrossRef]
  15. A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurisić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009). [CrossRef] [PubMed]
  16. X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009). [CrossRef]
  17. C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, and C. L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes,” Appl. Phys. Lett. 95(22), 223101 (2009). [CrossRef]
  18. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999). [CrossRef]
  19. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006). [CrossRef]
  20. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009). [CrossRef]
  21. B.-N. Park, J. J. Uhlrich, T. F. Kuech, and P. G. Evans, “Electrical properties of GaN/poly(3-hexylthiophene) interfaces,” J. Appl. Phys. 106(1), 013713 (2009). [CrossRef]
  22. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Adv. Funct. Mater. 17(2), 264–269 (2007). [CrossRef]
  23. T. R. B. Foong, Y. Shen, X. Hu, and A. Sellinger, “Template-Directed Liquid ALD Growth of TiO2 Nanotube Arrays: Properties and Potential in Photovoltaic Devices,” Adv. Funct. Mater. 20(9), 1390–1396 (2010). [CrossRef]
  24. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, “Nature of the 2.8 eV photoluminescence band in Mg doped GaN,” Appl. Phys. Lett. 72(11), 1326–1328 (1998). [CrossRef]
  25. M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005). [CrossRef]
  26. M. A. Reshchikov, Y. T. Moon, X. Gu, B. Nemeth, J. Nause, and H. Morkoc, “Unstable luminescence in GaN and ZnO,” Physica B 376-377, 715–718 (2006). [CrossRef]
  27. M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B 64(11), 115205 (2001). [CrossRef]
  28. H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective Angle Electroluminescence of Light-Emitting Diodes based on Nanostructured ZnO/GaN Heterojunctions,” Adv. Funct. Mater. 19(21), 3471–3475 (2009). [CrossRef]
  29. J. E. Fouquet and A. E. Siegman, “Room-temperature photoluminescence times in a GaAs/AlxGa1-xAs molecular beam epitaxy multiple quantum well structure,” Appl. Phys. Lett. 46(3), 280–282 (1985). [CrossRef]
  30. L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, and A. P. Purdy, “Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders,” J. Appl. Phys. 96(1), 675–682 (2004). [CrossRef]
  31. L. T. Tung, K. L. Lin, E. Y. Chang, W. C. Huang, Y. L. Hsiao, and C. H. Chiang, “Photoluminescence and Raman studies of GaN films grown by MOCVD,” J. Phys.: Conf. Ser. 187, 012021 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited