OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A657–A663

Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces

Lanying Yang, Xiong Li, Xianguo Tuo, Thanh Thi Van Nguyen, Xiangang Luo, and Minghui Hong  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A657-A663 (2011)
http://dx.doi.org/10.1364/OE.19.00A657


View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, Ag-Au alloy nanoparticles (NPs) were fabricated by dewetting process to enhance the broadband antireflection performance of textured silicon surfaces. The alloy NPs presented a large range of shapes and sizes, which provided an average reflectance (AR) below 4% over the spectral range of 300~1200 nm, a decrease of ~50% and ~90% as compared to the corresponding monometallic NPs and the original flat Si surfaces, respectively. The superior broadband antireflection demonstrated by the alloy NPs are attributed to the enhanced light trapping by alloy nanoparticle plasmon resonance.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.1210) Thin films : Antireflection coatings
(350.3390) Other areas of optics : Laser materials processing
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Thin Films

History
Original Manuscript: February 10, 2011
Revised Manuscript: May 7, 2011
Manuscript Accepted: May 9, 2011
Published: May 16, 2011

Citation
Lanying Yang, Xiong Li, Xianguo Tuo, Thanh Thi Van Nguyen, Xiangang Luo, and Minghui Hong, "Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces," Opt. Express 19, A657-A663 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, and H. Li, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
  2. L. Ma, Y. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. Ding, and X. Hou, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006). [CrossRef]
  3. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  4. C. B. Honsberg and S. R. Wenham, “New insights gained through pilot production of high-efficiency silicon solar cells,” Prog. Photovolt. Res. Appl. 3(2), 79–87 (1995). [CrossRef]
  5. N. V. Tabiryan, S. R. Nersisyan, and M. Warenghem, “Interaction of light with a transversely moving nonlinear medium: beyond Doppler laser velocimetry,” J. Appl. Phys. 83(1), 1 (1998). [CrossRef]
  6. H. Jansen, M. Deboer, J. Burger, R. Legtenberg, and M. Elwenspoek, “The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches,” Microelectron. Eng. 27(1-4), 475–480 (1995). [CrossRef]
  7. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
  8. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009). [CrossRef]
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  10. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  13. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010). [CrossRef]
  14. D. Wu and X. Liu, “Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo,” Appl. Phys. Lett. 97(6), 061904 (2010). [CrossRef]
  15. M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, “Optical properties of Au/Ag core/shell nanoshuttles,” Opt. Express 16(18), 14288–14293 (2008). [CrossRef] [PubMed]
  16. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008). [CrossRef] [PubMed]
  17. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited