OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A695–A700

Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration

Chih-Ciao Yang, C. H. Jang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Feng-Wen Huang, Yu-Hsiang Yeh, and Wei-Chih Lai  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A695-A700 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InGaN/sapphire-based photovoltaic (PV) cells with blue-band GaN/InGaN multiple-quantum-well absorption layers grown on patterned sapphire substrates were characterized under high concentrations up to 150-sun AM1.5G testing conditions. When the concentration ratio increased from 1 to 150 suns, the open-circuit voltage of the PV cells increased from 2.28 to 2.50 V. The peak power conversion efficiency (PCE) occurred at the 100-sun conditions, where the PV cells maintained the fill factor as high as 0.70 and exhibited a PCE of 2.23%. The results showed great potential of InGaN alloys for future high concentration photovoltaic applications.

© 2011 OSA

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(040.5350) Detectors : Photovoltaic
(230.0250) Optical devices : Optoelectronics

ToC Category:
Solar Concentrators

Original Manuscript: January 24, 2011
Revised Manuscript: February 21, 2011
Manuscript Accepted: April 29, 2011
Published: May 18, 2011

Chih-Ciao Yang, C. H. Jang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Feng-Wen Huang, Yu-Hsiang Yeh, and Wei-Chih Lai, "Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration," Opt. Express 19, A695-A700 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” Proc. 24th Eur. PVSEC, 55–61 (2009).
  2. A. D. Vos, Thermodynamics of Solar Energy Conversion, Wiley-VCH, Weinheim, Germany (2008).
  3. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003). [CrossRef]
  4. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1–4), 595–603 (2005). [CrossRef]
  5. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007). [CrossRef]
  6. J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009). [CrossRef]
  7. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009). [CrossRef]
  8. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954). [CrossRef]
  9. D. Jenny, J. Loferski, and P. Rappaport, “Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion,” Phys. Rev. 101(3), 1208–1209 (1956). [CrossRef]
  10. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, ” Science 281(5379), 955–961 (1998). [CrossRef] [PubMed]
  11. N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett. 94(13), 132505 (2009). [CrossRef]
  12. R. Dahal, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett. 97(7), 073115 (2010). [CrossRef]
  13. W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE J. Quantum Electron. 41(11), 1403–1409 (2005) (and references therein). [CrossRef]
  14. M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett. 91(18), 182106 (2007). [CrossRef]
  15. M. Jeng, Y. Lee, and L. Chang, “Temperature dependences of InxGa1-xN multiple quantum well solar cells,” J. Phys. D Appl. Phys. 42(10), 105101 (2009). [CrossRef]
  16. C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett. 97(2), 021113 (2010). [CrossRef]
  17. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980). [CrossRef]
  18. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 90(9), 1308–1321 (2006). [CrossRef]
  19. K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, K. Takahashi, and T. Unno, “Characteristics of GaAs-based concentrator cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 559–565 (2001). [CrossRef]
  20. G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Prog. Photovolt. Res. Appl. 16(6), 503–508 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited