OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A710–A715

Evaluation of characteristics for dye-sensitized solar cell with reflector applied

Soochang Choi, Eun-na-ra Cho, Sang-min Lee, Yong-woo Kim, and Deug-woo Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A710-A715 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dye-sensitized solar cells have slightly lower photoelectric efficiency than silicon solar cells. Researchers have investigated various ways to address this problem. This study improved the efficiency of a dye-sensitized solar cell by re-driving it with a reflector, reusing discarded light after it was absorbed. The reflector increased efficiency by about 50%, by increasing the size of the pattern shape and increasing the distance of the reflector.

© 2011 OSA

OCIS Codes
(000.4930) General : Other topics of general interest
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: April 11, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 14, 2011
Published: May 20, 2011

Soochang Choi, Eun-na-ra Cho, Sang-min Lee, Yong-woo Kim, and Deug-woo Lee, "Evaluation of characteristics for dye-sensitized solar cell with reflector applied," Opt. Express 19, A710-A715 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. I, Steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chem. Phys. Lett. 183(1–2), 89–93 (1991). [CrossRef]
  2. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004). [CrossRef]
  3. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005). [CrossRef] [PubMed]
  4. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006). [CrossRef]
  5. N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008). [CrossRef]
  6. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005). [CrossRef] [PubMed]
  7. Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, “Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core,” J. Phys. Chem. B 107(9), 1977–1981 (2003). [CrossRef]
  8. V. P. S. Perera, P. K. D. D. P. Pitigala, P. V. V. Jayaweera, K. M. P. Bandaranayake, and K. Tennakone, “Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures,” J. Phys. Chem. B 107(50), 13758–13761 (2003). [CrossRef]
  9. S. Ngamsinlapasathian, “Highly efficient dye-sensitized solar cell using nanocrystalline titanium containing nanotube structure,” J. Photochem. Photobiol. Chem. 164(1-3), 145–151 (2004). [CrossRef]
  10. A. Mihi, F. J. López-Alcaraz, and H. Miguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett. 88(19), 193110 (2006). [CrossRef]
  11. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 764–770 (2009). [CrossRef]
  12. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited