OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A824–A829

Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals

Taek Yong Hwang, A. Y. Vorobyev, and Chunlei Guo  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A824-A829 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through femtosecond laser irradiation, we produce in this work a unique type of surface nanostructure on Al that have enhanced absorption at UV and visible but a relatively small emissivity in infrared. By integrating this laser-treated Al to a solar-driven thermoelectric generator, we show that the thermoelectric generator integrated with the femtosecond laser-treated Al foil generates a significantly higher power than the ones without. Our study shows that our technique can dramatically enhance the efficiency of solar-driven thermoelectric devices that may lead to a leap forward in solar energy harnessing.

© 2011 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: April 21, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 20, 2011
Published: June 9, 2011

Taek Yong Hwang, A. Y. Vorobyev, and Chunlei Guo, "Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals," Opt. Express 19, A824-A829 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Xie and D. M. Gruen, “Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies,” J. Phys. Chem. B 114(45), 14339–14342 (2010). [CrossRef] [PubMed]
  2. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451(7175), 163–167 (2008). [CrossRef] [PubMed]
  3. T. C. Kandpal, A. K. Singhal, and S. S. Mathur, “Optimum power from a solar thermal power plant using solar concentrators,” Energy Convers. Manage. 23(2), 103–106 (1983). [CrossRef]
  4. S. A. Omer and D. G. Infield, “Design optimization of thermoelectric devices for solar power generation,” Sol. Energy Mater. Sol. Cells 53(1-2), 67–82 (1998). [CrossRef]
  5. F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285(5428), 703–706 (1999). [CrossRef] [PubMed]
  6. C. G. Granqvist, “Solar Energy Materials,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1789–1803 (2003). [CrossRef]
  7. A. Reja and R. J. Ram, “Solar Thermoelectric Generator for micro-Power Applications,” in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), ThC11. http://www.opticsinfobase.org/abstract.cfm?URI=Energy-2009-ThC11
  8. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008). [CrossRef] [PubMed]
  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001). [CrossRef] [PubMed]
  10. J. Chen, “Thermodynamic analysis of a solar-driven thermoelectric generator,” J. Appl. Phys. 79(5), 2717–2721 (1996). [CrossRef]
  11. G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, “Semiconducting Ge clathrates: Promising candidates for thermoelectric applications,” Appl. Phys. Lett. 73(2), 178–180 (1998). [CrossRef]
  12. A. Y. Vorobyev and C. Guo, “Solar Absorber Surfaces Treated by Femtosecond Laser,” in 2010 International Conference on Biosciences (BIOSCIENCESWORLD), 2010), 135–138.
  13. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009). [CrossRef] [PubMed]
  14. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914–041913 (2008). [CrossRef]
  15. J. J. Brophy, Basic electronics for scientist, 5th ed. (McGraw-Hill Publishing Company, Singapore, 1990).
  16. M. Cobble, “Calculations of Generator Performance,” in CRC Handbook of Thermoelectrics (CRC Press, 1995).
  17. F. Merola, L. Miccio, S. Coppola, V. Vespini, M. Paturzo, S. Grilli, and P. Ferraro, “Exploring the capabilities of Digital Holography as tool for testing optical microstructures,” 3D Research. 2, 1–8 (2011). [CrossRef]
  18. F. Joud, N. Warnasooriya, P. Bun, F. Verpillat, S. Suck, G. Tessier, M. Atlan, P. Desbiolles, M. Coppey-Moisan, M. Abboud, and M. Gross, “3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy,” 3D Res. 2, 1–8 (2011). [CrossRef]
  19. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals,” Appl. Phys. Lett. 95(12), 123111 (2009). [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006). [CrossRef] [PubMed]
  21. J. Agassi, “The kirchhoff-planck radiation law,” Science 156(3771), 30–37 (1967). [CrossRef] [PubMed]
  22. A. D. Raki, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited