OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A841–A850

Optimization-based design of surface textures for thin-film Si solar cells

Xing Sheng, Steven G. Johnson, Jurgen Michel, and Lionel C. Kimerling  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A841-A850 (2011)
http://dx.doi.org/10.1364/OE.19.00A841


View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic gratings and commercial random textures, and examine arbitrary irregular periodic textures designed by multi-parameter optimization. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. Over a 900–1100 nm wavelength range, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7πn, considerably larger than the original πn Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. However, the πn Lambertian limit still applies for isotropic incident light, and our structure obeys this limit when averaged over all the angles. Therefore, our design can be thought of optimizing the angle/enhancement tradeoff for periodic textures.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.0050) Diffraction and gratings : Diffraction and gratings

ToC Category:
Scattering

History
Original Manuscript: May 13, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 8, 2011
Published: June 16, 2011

Citation
Xing Sheng, Steven G. Johnson, Jurgen Michel, and Lionel C. Kimerling, "Optimization-based design of surface textures for thin-film Si solar cells," Opt. Express 19, A841-A850 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).
  2. J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (John Wiley & Sons, Ltd, 2006).
  3. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983), http://link.aip.org/link/doi/10.1063/1.94432 . [CrossRef]
  4. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ao-34-14-2476 . [CrossRef] [PubMed]
  5. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006), http://link.aip.org/link/doi/10.1063/1.2349845 . [CrossRef]
  6. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron Devices 54, 1926–1933 (2007), http://dx.doi.org/10.1109/TED.2007.900976 .
  7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 . [CrossRef] [PubMed]
  8. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116–061119 (2007), http://link.aip.org/link/doi/10.1063/1.2768882 . [CrossRef]
  9. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-15238 . [CrossRef] [PubMed]
  10. P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon Photovoltaics Using Conducting Photonic Crystal Back-Reflectors,” Adv. Mater. (Deerfield Beach Fla.) 20(8), 1577–1582 (2008), http://dx.doi.org/10.1002/adma.200702219 . [CrossRef]
  11. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008), http://link.aip.org/link/doi/10.1063/1.3039787 . [CrossRef]
  12. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23058 . [CrossRef]
  13. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010), http://dx.doi.org/10.1021/nl9034237 . [CrossRef]
  14. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-6-5691 . [CrossRef] [PubMed]
  15. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010), http://dx.doi.org/10.1021/nl1029804 . [CrossRef] [PubMed]
  16. X. Sheng, J. Liu, N. Coronel, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices,” IEEE Photon. Tech. Lett. 22, 1394–1396 (2010), http://dx.doi.org/10.1109/LPT.2010.2060717 .
  17. A. Naqavi, K. Soderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-1-128 . [CrossRef] [PubMed]
  18. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011), http://dx.doi.org/10.1002/adma.201003217 . [CrossRef]
  19. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19371 . [CrossRef] [PubMed]
  20. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008), http://dx.doi.org/10.1016/j.solmat.2008.07.021 . [CrossRef]
  21. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009), http://link.aip.org/link/doi/10.1063/1.3256187 . [CrossRef]
  22. O. Isabella, F. Moll, J. Krc, and M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010), http://dx.doi.org/10.1002/pssa.200982828 .
  23. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010), http://dx.doi.org/10.1073/pnas.1008296107 . [CrossRef] [PubMed]
  24. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A366 . [CrossRef] [PubMed]
  25. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97(7), 071110 (2010), http://link.aip.org/link/doi/10.1063/1.3475484 . [CrossRef]
  26. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982), http://www.opticsinfobase.org/abstract.cfm?URI=josa-72-7-899 . [CrossRef]
  27. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, “Highly textured SnO2:F TCO films for a-Si solar cells,” Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992).
  28. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3008 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-14-11-3001 . [CrossRef]
  29. Z. Yu and S. Fan, “Angular constraint on light-trapping absorption enhancement in solar cells,” Appl. Phys. Lett. 98(1), 011106 (2011), http://link.aip.org/link/doi/10.1063/1.3532099 . [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  31. J. M. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” in Proceedings of 29th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New Orleans, LA, 2002), pp. 150–153, http://dx.doi.org/10.1109/PVSC.2002.1190478 .
  32. J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-5-742 . [CrossRef] [PubMed]
  33. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17(9), 7505–7518 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-9-7505 . [CrossRef] [PubMed]
  34. P. Campbell and M. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE Trans. Electron Devices 33, 234–239 (1986), http://dx.doi.org/10.1109/T-ED.1986.22472 .
  35. A. Ta〉ove and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA, 2000).
  36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A 〉exible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687–702 (2010), http://dx.doi.org/10.1016/j.cpc.2009.11.008 .
  37. S. G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
  38. M. J. D. Powell, “Direct search algorithms for optimization calculations,” Acta. Numerica 7, 287–336 (1998), http://dx.doi.org/10.1017/S0962492900002841 . [CrossRef]
  39. T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 35, 233–243 (2005), http://dx.doi.org/10.1109/TSMCC.2004.841906 .
  40. W. C. Chew, J. M. Jin, E. Michielssen, and J. Song, eds., Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Norwood, MA, 2001).
  41. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, Wellesley, MA, 2007).
  42. D. C. Dobson and S. J. Cox, “Maximizing Band Gaps in Two-Dimensional Photonic Crystals,” SIAM J. Appl. Math. 59(6), 2108–2120 (1999), http://dx.doi.org/10.1137/S0036139998338455 . [CrossRef]
  43. P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1996 . [CrossRef] [PubMed]
  44. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81(2-3), 235–244 (2005), http://dx.doi.org/10.1007/s00340-005-1877-3 . [CrossRef]
  45. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, “Topology optimization of a photonic crystal waveguide termination to maximize directional emission,” Appl. Phys. Lett. 86(11), 111114 (2005), http://link.aip.org/link/doi/10.1063/1.1885170 . [CrossRef]
  46. Y. Tsuji and K. Hirayama, “Design of Optical Circuit Devices Using Topology Optimization Method With Function-Expansion-Based Refractive Index Distribution,” IEEE Phot. Tech. Lett. 20, 982–984 (2008), http://dx.doi.org/10.1109/LPT.2008.922921 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited