OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A859–A864

The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair

C.W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A859-A864 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Growth of laser damage on SiO2 optical components used in high power lasers can be reduced or eliminated by pre-exposure to pulses of a few hundred ps in duration. Such pre-exposure would cause weak locations on the optics surface to self-identify by initiating very small damage sites. The sites which initiate will be only a few microns in diameter and will have a very low probability of growing even without any further treatment. Repairing damage sites when small is important because both laser mitigation and acid etching are very successful in preventing such small sites from growing.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.6030) Materials : Silica

ToC Category:
Nuclear Fusion

Original Manuscript: May 3, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 4, 2011
Published: June 20, 2011

C.W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, "The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair," Opt. Express 19, A859-A864 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, P. Lucero, S. Mills, M. Bernacil, and R. P. Hackel, “Design of a production process to enhance optical performance of 3ω optics,” Proc. SPIE 5273, 296–302 (2004). [CrossRef]
  2. R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004). [CrossRef]
  3. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009). [PubMed]
  4. C. J. Stolz, J. A. Menapace, K. I. Schaffers, C. Bibeau, M. D. Thomas, and A. J. Griffin, “Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing,” Proc. SPIE 5991, 59911I, 59911I-7 (2005). [CrossRef]
  5. H. Bercegol, P. Grua, D. Hebert, and J.-P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003, 672003-12 (2007). [CrossRef]
  6. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010). [PubMed]
  7. G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. G. Demos, “High-resolution 3D imaging of surface damage sites in fused silica with optical coherence tomography,” Proc. SPIE 6720, 67201F, 67201F-10 (2007). [CrossRef]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011). [CrossRef]
  9. J. J. Adams, T. L. Weiland, J. R. Stanley, W. D. Sell, R. L. Luthi, J. L. Vickers, C. W. Carr, M. D. Feit, A. M. Rubenchik, M. L. Spaeth, and R. P. Hackel, “Pulse length dependence of laser conditioning and bulk damage in KD2PO4,” Proc. SPIE 5647, 265–278 (2005). [CrossRef]
  10. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett. 30(20), 2766–2768 (2005). [PubMed]
  11. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007). [CrossRef]
  12. C. W. Carr, M. J. Matthews, J. D. Bude, and M. L. Spaeth, “The effect of laser pulse duration on laser-induced damage in KDP and SiO2,” Proc. SPIE 6403, 64030K, 64030K-9 (2006). [CrossRef]
  13. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003). [PubMed]
  14. R. C. Estler and N. S. Nogar, “Chemical precursor to optical-damage detected by laser ionization mass-spectrometry,” Appl. Phys. Lett. 52(26), 2205–2207 (1988). [CrossRef]
  15. J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Quantitative study of laser damage probabilities in silica and calibrated liquids: comparison with theoretical prediction,” Proc. SPIE 4347, 295–307 (2001). [CrossRef]
  16. J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X, 59910X-12 (2005). [CrossRef]
  17. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010). [PubMed]
  18. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010). [CrossRef]
  19. C. W. Carr and J. M. Auerbach, “Effect of multiple wavelengths on laser-induced damage in KH(2-x)DxPO4 crystals,” Opt. Lett. 31(5), 595–597 (2006). [PubMed]
  20. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large-aperture high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004). [CrossRef]
  21. B. Bertussi, H. Piombini, D. Damiani, M. Pommies, X. Le Borgne, and D. Plessis, “SOCRATE: an optical bench dedicated to the understanding and improvement of a laser conditioning process,” Appl. Opt. 45(33), 8506–8516 (2006). [PubMed]
  22. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the national ignition facility,” Phys. Plasmas 11(2), 339–491 (2004). [CrossRef]
  23. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [PubMed]
  24. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006). [CrossRef]
  25. D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt. (to be published). [PubMed]
  26. L. Lamaignère, M. Balas, R. Courchinoux, T. Donval, J. C. Poncetta, S. Reyne, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010). [CrossRef]
  27. C. J. Hooker, J. M. D. Lister, K. Osvay, D. T. Sheerin, D. C. Emmony, and R. L. J. Cowell, “Pulse-length scaling of laser damage at 249 nm in oxide and fluoride multilayer coatings,” Opt. Lett. 18(12), 944–946 (1993). [PubMed]
  28. R. A. Negres, Z. M. Liao, G. A. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multi-parameter space of ns-laser damage growth in fused silica optics,” (submitted) Appl. Opt. (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited