OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A865–A874

Approaching the Lambertian limit in randomly textured thin-film solar cells

Stephan Fahr, Thomas Kirchartz, Carsten Rockstuhl, and Falk Lederer  »View Author Affiliations

Optics Express, Vol. 19, Issue S4, pp. A865-A874 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Lambertian limit for solar cells is a benchmark for evaluating their efficiency. It has been shown that the performance of either extremely thick or extremely thin solar cells can be driven close to this limit by using an appropriate photon management. Here we show that this is likewise possible for realistic, practically relevant thin-film solar cells based on amorphous silicon. Most importantly, we achieve this goal by relying on random textures already incorporated into state-of-the-art superstrates; with the only subtlety that their topology has to be downscaled to typical feature sizes of about 100 nm.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(290.0290) Scattering : Scattering
(310.0310) Thin films : Thin films
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: April 19, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: May 23, 2011
Published: June 22, 2011

Stephan Fahr, Thomas Kirchartz, Carsten Rockstuhl, and Falk Lederer, "Approaching the Lambertian limit in randomly textured thin-film solar cells," Opt. Express 19, A865-A874 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Könenkamp, S. Muramatsu, H. Itoh, S. Matsubara, and T. Shimada, “Mobility-lifetime product in hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 29, L2155–L2158 (1990). [CrossRef]
  2. H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, “Mobility-lifetime product and interface property in amorphous silicon solar cells,” J. Appl. Phys. 54, 3236–3243 (1983). [CrossRef]
  3. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292–294 (1977). [CrossRef]
  4. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004). [CrossRef]
  5. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi A 205, 2777–2795 (2008). [CrossRef]
  6. J. Grandidier, D. M. Callahan, N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres,” Adv. Mater. 23, 5 (2011).
  7. C. Ulbrich, S. Fahr, J. Üpping, M. Peters, T. Kirchartz, C. Rockstuhl, R. Wehrspohn, A. Gombert, F. Lederer, and U. Rau, “Directional selectivity and ultra-light-trapping in solar cells,” Phys. Status Solidi A 205, 2831–2843 (2008). [CrossRef]
  8. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439–445 (2010). [CrossRef] [PubMed]
  9. J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009). [CrossRef]
  10. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008). [CrossRef]
  11. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009). [CrossRef] [PubMed]
  12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. (1917–1983) 72, 899–907 (1982). [CrossRef]
  13. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10, 2410–2415 (1993). [CrossRef]
  14. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  15. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010). [CrossRef] [PubMed]
  16. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovoltaics 19(4), 473–477 (2010). [CrossRef]
  17. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010). [CrossRef] [PubMed]
  18. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247–253 (1999). [CrossRef]
  19. S. Nicolay, M. Despeisse, F. J. Haug, and B. Ballif, “Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 1031–1034 (2011). [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  21. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000). [CrossRef]
  22. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436–6443 (2000). [CrossRef]
  23. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010). [CrossRef] [PubMed]
  24. J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90, 142107 (2007). [CrossRef]
  25. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101, 074903 (2007). [CrossRef]
  26. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983). [CrossRef] [PubMed]
  27. M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% Efficient CSG minimodules,” Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan (2007).
  28. K. Bittkau, R. Carius, and C. Lienau, “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76, 035330 (2007). [CrossRef]
  29. C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91, 171104 (2007). [CrossRef]
  30. ASTM Standard G173-03, URL: http://www.astm.org
  31. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10, 235–241 (2002). [CrossRef]
  32. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. de Wolf, F. Haug, M. Despeisse, and C. Ballif, “Nanoimprint lithography for high-efficiency thin-film silicon solar cells,” Nano Lett. 11, 661–665 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited