OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A875–A887

Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum

Yin-Jung Chang and Yu-Ting Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A875-A887 (2011)
http://dx.doi.org/10.1364/OE.19.00A875


View Full Text Article

Enhanced HTML    Acrobat PDF (1944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband omnidirectional antireflection (AR) coatings for solar cells optimized using simulated annealing (SA) algorithm incorporated with the solar (irradiance) spectrum at Earth’s surface (AM1.57 radiation) are described. Material dispersions and reflections from the planar backside metal are considered in the rigorous electromagnetic calculations. Optimized AR coatings for bulk crystalline Si and thin-film CuIn1–x Ga x Se2 (CIGS) solar cells as two representative cases are presented and the effect of solar spectrum in the AR coating designs is investigated. In general, the angle-averaged reflectance of a solar-spectrum-incorporated AR design is shown to be smaller and more uniform in the spectral range with relatively stronger solar irradiance. By incorporating the transparent conductive and buffer layers as part of the AR coating in CIGS solar cells (2μm-thick CIGS layer), a single MgF2 layer could provide an average reflectance of 8.46% for wavelengths ranging from 350 nm to 1200 nm and incident angles from 0° to 80°.

© 2011 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 8, 2011
Manuscript Accepted: June 9, 2011
Published: June 27, 2011

Citation
Yin-Jung Chang and Yu-Ting Chen, "Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum," Opt. Express 19, A875-A887 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  2. C.-H. Sun, W.-L. Min, N. C. Linn, P. Jianga, and B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon,” Appl. Phys. Lett. 91, 231105 (2007). [CrossRef]
  3. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007). [CrossRef]
  4. V. M. Aroutiounian, Kh. Martirosyan, and P. Soukiassian, “Almost zero reflectance of a silicon oxynitride/porous silicon double layer antireflection coating for silicon photovoltaic cells,” J. Phys. D 39, 1623–1625 (2006). [CrossRef]
  5. J. H. Selj, A. Thogersen, S. E. Foss, and E. S. Marstein, “Optimization of multilayer porous silicon antireflection coatings for silicon solar cells,” J. Appl. Phys. 107, 074904 (2010). [CrossRef]
  6. Y. Wang, R. Tummala, L. Chen, L. Q. Guo, W. Zhou, and M. Tao, “Solution-processed omnidirectional antireflection coatings on amorphous silicon solar cells,” J. Appl. Phys. 105, 103501 (2009). [CrossRef]
  7. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  8. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008). [CrossRef]
  9. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  10. D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, and J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009). [CrossRef] [PubMed]
  11. J. S. Cramer, Econometric Application of Maximum Likelihood Methods (Cambridge University Press, 1986). [CrossRef]
  12. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983). [CrossRef] [PubMed]
  13. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continous variables with the “Simulated Annealing” algorithm,” ACM. Trans. Math. Softw. 13(3), 262–280 (1987). [CrossRef]
  14. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  15. N. Imam, E. N. Glytsis, and T. K. Gaylord, “Semiconductor intersubband laser/detector performance optimization using a simulated annealing algorithm,” Supperlattices Microstruct. 30(1), 29–43 (2001). [CrossRef]
  16. S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra , 2nd ed. (Prentice-Hall, 1992).
  17. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1090 (1953). [CrossRef]
  18. E. H. L. Aarts and P. J. M. Van Laarhoven, “Statistical cooling: a general approach to combinatorial optimization problems,” Philips J. Res. 40(4), 193–226 (1985).
  19. T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol. 14(5), 914–927 (1996). [CrossRef]
  20. Y.-J. Chang and Y.-C. Liu, “Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration,” Opt. Express 19(4), 3063–3076 (2011). [CrossRef] [PubMed]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  22. R. E. Bird, R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, “Solar spectral measurements in the terrestrial environment,” Appl. Opt. 21(8), 1430–1436 (1982). [CrossRef] [PubMed]
  23. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  24. S.-D. Mo and W. Y. Ching, “Electronic and optical properties of three phses of titanium dioxide: rutile, anatase, and brookite,” Phys. Rev. B 51(19), 13023–13032 (1995). [CrossRef]
  25. M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells (Wiley-VCH, 2008). [CrossRef]
  26. K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).
  27. J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).
  28. P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1–xGaxSe2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003). [CrossRef]
  29. Y. Hamakawa, ed., Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications (Springer, 2010).
  30. T. Nakada, Y. Kanda, S. Kijima, Y. Komiya, D. Ohmori, H. Ishizaki, and N. Yamada, “Bifacial CIGS thin film solar cells,” in Proc. 20th Eur. Photovoltaic Sol. Energy Conf. , pp. 1736–1739 (Fraunhofer ISE, 2005).
  31. R. N. Bhattacharya, W. Batchelor, J. F. Hiltner, and J. R. Sites, “Thin-film CuIn1–xGaxSe2 photovoltaic cells from solution-based precursor layers,” Appl. Phys. Lett. 75, 1431 (1999). [CrossRef]
  32. S. Ishizuka, H. Shibata, A. Yamada, P. Fons, K. Sakurai, K. Matsubara, and S. Niki, “Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices,” Appl. Phys. Lett. 91, 041902 (2007). [CrossRef]
  33. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited