OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A900–A907

Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays

Liang-Yi Chen, Hung-Hsun Huang, Chun-Hsiang Chang, Ying-Yuan Huang, Yuh-Renn Wu, and JianJang Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A900-A907 (2011)
http://dx.doi.org/10.1364/OE.19.00A900


View Full Text Article

Enhanced HTML    Acrobat PDF (2100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strain in the semiconductor light emitting layers has profound effect on the energy band structure and the optical properties of the light emitting diodes (LEDs). Here, we report the fabrication and characterization of GaN nanorod LED arrays. We found that the choice of nanorod passivation materials results in the variation of strain in the InGaN/GaN quantum wells, and thus the corresponding change of light emission properties. The results were further investigated by performing Raman measurement to understand the strain of nanorods with different passivation materials and by calculating the optical transition energy of the devices under the influence of strain-induced deformation potential and the piezoelectric polarization field.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: March 7, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 3, 2011
Published: July 1, 2011

Virtual Issues
Optics in LEDS for Lighting (2011) Optics Express

Citation
Liang-Yi Chen, Hung-Hsun Huang, Chun-Hsiang Chang, Ying-Yuan Huang, Yuh-Renn Wu, and JianJang Huang, "Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays," Opt. Express 19, A900-A907 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007). [CrossRef]
  2. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009). [CrossRef]
  3. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free Indium Gallium Nitride/Gallium Nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004). [CrossRef]
  4. A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, “Growth and characterization of InGaN/GaN nanocolumn LED,” Proc. SPIE 6129, 36–43 (2006).
  5. M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN–InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays,” IEEE Photon. Tech. L. 21(4), 257–259 (2009). [CrossRef]
  6. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays,” IEEE J. Sel. Top. Quant. 15(4), 1242–1249 (2009). [CrossRef]
  7. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984). [CrossRef]
  8. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007). [CrossRef]
  9. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C. T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15(15), 9357–9365 (2007). [CrossRef] [PubMed]
  10. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006). [CrossRef] [PubMed]
  11. Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical properties of the partially strain relaxed InGaN/GaN light-emitting diodes induced by p-type GaN surface texturing,” IEEE Electron Device Lett. 32(2), 182–184 (2011). [CrossRef]
  12. S. H. Park, D. Ahn, and S. L. Chuang, “Electronic and optical properties of a- and m-plane wurtzite InGaN–GaN quantum wells,” IEEE J. Quantum Electron. 43(12), 1175–1182 (2007). [CrossRef]
  13. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549–10556 (2008). [CrossRef] [PubMed]
  14. L. Y. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen, and J. J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes,” Opt. Express 18(8), 7664–7669 (2010). [CrossRef] [PubMed]
  15. A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, “Micro-Raman characterization of InxGa1−xN/GaN/Al2O3 heterostructures,” Phys. Rev. B 72(15), 155336 (2005). [CrossRef]
  16. S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, “Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy,” Phys. Rev. B 65(7), 075202 (2002). [CrossRef]
  17. H. H. Huang and Y. R. Wu, “Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes,” J. Appl. Phys. 106(2), 023106 (2009). [CrossRef]
  18. Y. R. Wu and J. Singh, “Polar heterostructure for multifunction devices theoretical studies,” IEEE Trans. Electron. Dev. 52(2), 284–293 (2005). [CrossRef]
  19. D. Fritsch, H. Schmidt, and M. Grundmann, “Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN and InN,” Phys. Rev. B 67(23), 235205 (2003). [CrossRef]
  20. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amaro, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]
  21. Y. R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” J. Appl. Phys. 94(9), 5826–5831 (2003). [CrossRef]
  22. A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” J. Appl. Phys. 81(9), 6332–6338 (1997). [CrossRef]
  23. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III–V nitrides,” Phys. Rev. B 56(16), R10024–R10027 (1997). [CrossRef]
  24. A. S. Barker and M. Ilegems, “Infrared lattice vibrations and free-electron Dispersion in GaN,” Phys. Rev. B 7(2), 743–750 (1973). [CrossRef]
  25. V. Y. Davydov, V. V. Emtsev, A. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, “Experimental and theoretical studies of phonons in hexagonal InN,” Appl. Phys. Lett. 75(21), 3297–3299 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited