OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1051–A1056

Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells

Y. Liu, S.H. Sun, J. Xu, L. Zhao, H.C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue S5, pp. A1051-A1056 (2011)
http://dx.doi.org/10.1364/OE.19.0A1051


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this letter, we report the antireflection and light absorption enhancement by forming sub-wavelength nano-patterned Si structures via nano-sphere lithography technique. It is found that the surface reflection can be significantly suppressed in a wide spectral range (400-1000 nm) and the weighted mean reflection is less than 5%. Meanwhile, the broad band optical absorption enhancement is achieved consequently. Heterojunction solar cells are prepared by depositing ultrathin amorphous Si film on the nano-patterned Si structures, the short circuit current density increases to 37.2 mA/cm2 and the power conversion efficiency is obviously improved compared to the reference cell on flat Si substrate.

© 2011 OSA

OCIS Codes
(160.4236) Materials : Nanomaterials

ToC Category:
Photovoltaics

History
Original Manuscript: April 6, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 19, 2011
Published: July 15, 2011

Citation
Y. Liu, S.H. Sun, J. Xu, L. Zhao, H.C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, "Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells," Opt. Express 19, A1051-A1056 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S5-A1051


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010). [CrossRef] [PubMed]
  2. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells” Appl. Phys. Lett. 95(26), 263501 (2009). [CrossRef]
  3. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel re〉ection,” Nat. Photonics 1, 176 (2007).
  4. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006). [CrossRef]
  5. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010). [CrossRef]
  6. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010). [CrossRef]
  7. J. Li, H. Y. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011). [CrossRef]
  8. S. J. Jang, Y. M. Song, J. S. Yu, C. I. Yeo, and Y. T. Lee, “Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers,” Opt. Lett. 36(2), 253–255 (2011). [CrossRef] [PubMed]
  9. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [CrossRef] [PubMed]
  10. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  11. Y. Wang, J. Rybezynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron island by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005). [CrossRef]
  12. Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, and K. Chen, “Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates,” Opt. Express 19(4), 3347–3352 (2011). [CrossRef] [PubMed]
  13. D. Chen, Y. Liu, J. Xu, D. Wei, H. Sun, L. Xu, T. Wang, W. Li, and K. Chen, “Improved emission efficiency of electroluminescent device containing nc-Si/SiO(2) multilayers by using nano-patterned substrate,” Opt. Express 18(2), 917–922 (2010). [CrossRef] [PubMed]
  14. Q. Wang, S. Ward, L. Gedvilas, B. Keyes, E. Sanchez, and S. Wang, “Conformal thin-film silicon nitride deposited by hot-wire chemical vapor deposition,” Appl. Phys. Lett. 84(3), 338 (2004). [CrossRef]
  15. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  16. J. S. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. W. Sun, P. G. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin □lms for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009). [CrossRef]
  17. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009). [CrossRef] [PubMed]
  18. Q. Wang, “High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells,” Philos. Mag. 89(28), 2587–2598 (2009). [CrossRef]
  19. M. Taguchi, E. Maruyama, and M. Tanaka, “Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells,” Jpn. J. Appl. Phys. 47(2), 814–818 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited