OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1067–A1081

Modal analysis of enhanced absorption in silicon nanowire arrays

Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, C. Martijn de Sterke, and Ross C. McPhedran  »View Author Affiliations

Optics Express, Vol. 19, Issue S5, pp. A1067-A1081 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the absorption of solar radiation by silicon nanowire arrays, which are being considered for photovoltaic applications. These structures have been shown to have enhanced absorption compared with thin films, however the mechanism responsible for this is not understood. Using a new, semi-analytic model, we show that the enhanced absorption can be attributed to a few modes of the array, which couple well to incident light, overlap well with the nanowires, and exhibit strong Fabry-Pérot resonances. For some wavelengths the absorption is further enhanced by slow light effects. We study the evolution of these modes with wavelength to explain the various features of the absorption spectra, focusing first on a dilute array at normal incidence, before generalizing to a dense array and off-normal angles of incidence. The understanding developed will allow for optimization of simple SiNW arrays, as well as the development of more advanced designs.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: May 26, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 1, 2011
Published: July 19, 2011

Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, C. Martijn de Sterke, and Ross C. McPhedran, "Modal analysis of enhanced absorption in silicon nanowire arrays," Opt. Express 19, A1067-A1081 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Lewis, “Toward cost-effective solar energy use,” Science 315, 798–801 (2007). [CrossRef] [PubMed]
  2. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008). [CrossRef]
  3. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 10, 1002 (2010).
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–217800 (2008). [CrossRef] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  6. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, and L. C. Kimerling, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007). [CrossRef] [PubMed]
  8. R. A. Pala, J. S. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film Solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  9. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, 366–380 (2010). [CrossRef]
  10. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29, 300–305 (1982). [CrossRef]
  11. K. Peng, Y. Xu, Y. Wu, and Y. Yan, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005). [CrossRef]
  12. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009). [CrossRef] [PubMed]
  13. Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8, 648–53 (2009). [CrossRef] [PubMed]
  14. E. C. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef] [PubMed]
  15. B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas (> 1 cm2) with Au and Cu catalysts,” Appl. Phys. Lett. 91, 103110 (2007). [CrossRef]
  16. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010). [CrossRef] [PubMed]
  17. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005). [CrossRef]
  18. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells.” J. Am. Chem. Soc. 130, 9224–9225 (2008). [CrossRef] [PubMed]
  19. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011). [CrossRef] [PubMed]
  20. P. P. Altermatt, Y. Yang, T. Langer, A. Schenk, and R. Brendel, “Simulation of optical properties of Si wire cells,” Conf. Proc. 34th IEEE PVSC , 972–977 (2009).
  21. J. Li, H. Yu, M. Wong, X. Li, and G. Zhang, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113 (2009). [CrossRef]
  22. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef] [PubMed]
  23. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  24. E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express 19, 3316–3331 (2011). [CrossRef] [PubMed]
  25. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009). [CrossRef] [PubMed]
  26. K. R. Catchpole, S. Mokkapati, and F. J. Beck, “Comparing nanowire, multi-junction and single junction solar cells in the presence of light trapping,” J. Appl. Phys. 109, 084519 (2011). [CrossRef]
  27. K. Dossou, L. C. Botten, A. A. Asatryan, B. P. C. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for scattering by absorbing photonic crystal slabs,” in preparation.
  28. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995). [CrossRef]
  29. K. B. Dossou and M. Fontaine, “A high order isoparametric finite element method for the computation of waveguide modes,” Comput. Method Appl. M. 194, 837–858 (2005). [CrossRef]
  30. L. C. Botten, T. P. White, A. A. Asatryan, T. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 1–13 (2004). [CrossRef]
  31. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981). [CrossRef]
  32. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  33. ASTM, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nreal.gov/solar/spectra/am1.5 .
  34. G. H. Derrick and R. C. McPhedran, “Coated crossed gratings,” J. Opt. 15, 69–81 (1984). [CrossRef]
  35. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires.” Nano Lett. 11, 1851–1856 (2011). [CrossRef] [PubMed]
  36. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  37. A. Movchan, N. Movchan, and C. Poulton, Asymptotic Models of Fields in Dilute and Densely Packed Composites (Imperial College Press, 2002), Chap. 3. [CrossRef]
  38. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41, 7808–16 (2000). [CrossRef]
  39. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010). [CrossRef] [PubMed]
  40. R. C. McPhedran and W. T. Perrins, “Electrostatic and optical resonances of cylinder pairs,” Appl. Phys. 24, 311–318 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited