OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S5 — Sep. 12, 2011
  • pp: A1088–A1103

Nanoscale heat flux between nanoporous materials

S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J.-J. Greffet  »View Author Affiliations

Optics Express, Vol. 19, Issue S5, pp. A1088-A1103 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by:(a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.5420) Optics at surfaces : Polaritons

ToC Category:
Energy Transfer

Original Manuscript: May 18, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 16, 2011
Published: July 29, 2011

S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J.-J. Greffet, "Nanoscale heat flux between nanoporous materials," Opt. Express 19, A1088-A1103 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Polder and M. van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303 (1971). [CrossRef]
  2. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005). [CrossRef]
  3. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer and noncontact friction,” Rev. Mod. Phys. 79, 1291 (2007). [CrossRef]
  4. E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Phys. Usp. 52, 425 (2009). [CrossRef]
  5. M. L. Levin, V. G. Polevoi, and S. M. Rytov, “Theory of heat-transfer due to a fluctuation electromagnetic field,” Sov. Phys. JETP 50, 1054 (1980).
  6. J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50, 18517 (1994).
  7. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett. 78, 2931 (2001). [CrossRef]
  8. C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703 (2006). [CrossRef]
  9. S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “A mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010). [CrossRef]
  10. R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. K. H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894 (2001). [CrossRef]
  11. A. Kittel, W. Müller-Hirsch, J. Parisi, S.A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005). [CrossRef] [PubMed]
  12. U. F. Wischnath, J. Welker, M. Munzel, and A. Kittel, “Near-field scanning thermal microscope,” Rev. Sci. Instrum. 79, 073708 (2008). [CrossRef] [PubMed]
  13. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008). [CrossRef]
  14. A. Narayanaswamy, S. Shen, and G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008). [CrossRef]
  15. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909 (2009). [CrossRef] [PubMed]
  16. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514 (2009). [CrossRef]
  17. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  18. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191 (2004). [CrossRef]
  19. N. Fang, H. Lee, C. Sun, and X. Zhanget, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005). [CrossRef] [PubMed]
  20. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007). [CrossRef]
  21. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215 (2010). [CrossRef]
  22. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010). [CrossRef]
  23. T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A 78, 042107 (2008). [CrossRef]
  24. G. Bimonte, “Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium,” Phys. Rev. A 80, 042102 (2009). [CrossRef]
  25. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104, 013103 (2008). [CrossRef]
  26. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  27. S.-F. Chuang, S. D. Collins, and R. L. Smith, “Porous silicon microstructure as studied by transmission electron microscopy,” Appl. Phys. Lett. 55, 1540 (1989). [CrossRef]
  28. P. Halevi, A. A. Krokhin, and J. Arriaga, “Photonic crystal optics and homogenization of 2D periodic composites,” Phys. Rev. Lett. 82, 719 (1999). [CrossRef]
  29. A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002). [CrossRef]
  30. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  31. The other branch is connected with the so called Brewster modes [34], that are propagating waves for which rp,p vanishes.
  32. M. Liscidini and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B 81, 115335 (2010). [CrossRef]
  33. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548 (2000). [CrossRef] [PubMed]
  34. A. Archambault, T. V. Teperik, F. Marquier, and J.-J. Greffet, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 79, 195414 (2009).
  35. H. RaetherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  37. P. Ben-Abdallah and K. Joulain, “Noncontact heat transfer between two metamaterials,” Phys. Rev. B 82, 121419 (2010). [CrossRef]
  38. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481 (1986). [CrossRef]
  39. R. Cooke,Classical Algebra (John-Wiley & Sons, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited