OSA's Digital Library

Energy Express

Energy Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. S6 — Nov. 7, 2011
  • pp: A1175–A1183

Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis  »View Author Affiliations

Optics Express, Vol. 19, Issue S6, pp. A1175-A1183 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multilayer stack made of a Silver, a Silica and a Palladium layer. The spectral modulation of the light transmitted by the fiber allows to detect the presence of hydrogen in the environment. The sensor is only sensitive to the Transverse Magnetic polarized light and the Traverse Electric polarized light can be used therefore as a reference signal. A more reliable response is expected for the fiber SPR hydrogen sensor based on spectral modulation instead of on intensity modulation. The multilayer thickness defines the sensor performance. The silica thickness tunes the resonant wavelength, whereas the Silver and Palladium thickness determine the sensor sensitivity. In an optimal configuration (NA = 0.22, 100 μm core radius and transducer length = 1 cm), the resonant wavelength is shifted over 17.6 nm at a concentration of 4% Hydrogen in Argon for the case of the 35 nm Silver/ 100 nm Silica/ 3 nm palladium multilayer.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Remote Sensing and Sensors

Original Manuscript: February 11, 2011
Revised Manuscript: March 24, 2011
Manuscript Accepted: March 28, 2011
Published: September 16, 2011

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, "Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing," Opt. Express 19, A1175-A1183 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy 21(6), 461–464 (1996). [CrossRef]
  2. M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984). [CrossRef]
  3. R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007). [CrossRef]
  4. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999). [CrossRef]
  5. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005). [CrossRef]
  6. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999). [CrossRef]
  7. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006). [CrossRef]
  8. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008). [CrossRef]
  9. X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008). [CrossRef]
  10. J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  11. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002). [CrossRef]
  12. C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011). [CrossRef]
  13. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971). [CrossRef]
  14. D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007). [CrossRef]
  15. M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007). [CrossRef]
  16. M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008). [CrossRef]
  17. K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992). [CrossRef]
  18. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008). [CrossRef] [PubMed]
  19. M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006). [CrossRef]
  20. A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007). [CrossRef]
  21. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  23. Abeles, “La theorie generale des couches minces,” J. Phys. Radium 11, 307–310 (1950).
  24. K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999). [CrossRef]
  25. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007). [CrossRef]
  26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  27. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010). [CrossRef]
  28. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  29. F. Y. Kou and T. Tamir, “Range extension of surface-plasmons by dielectric layers,” Opt. Lett. 12(5), 367–369 (1987). [CrossRef] [PubMed]
  30. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006). [CrossRef]
  31. A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008). [CrossRef]
  32. V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited