OSA's Digital Library

Energy Express

Energy Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. S6 — Nov. 7, 2011
  • pp: A1211–A1218

Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection

Feng-Wen Huang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang  »View Author Affiliations

Optics Express, Vol. 19, Issue S6, pp. A1211-A1218 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1685 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Up-converted heterostructures with a Mn-doped GaN intermediate band photodetection layer and an InGaN/GaN multiple quantum well (MQW) luminescence layer grown by metal-organic vapor-phase epitaxy are demonstrated. The up-converters exhibit a significant up-converted photoluminescence (UPL) signal. Power-dependent UPL and spectral responses indicate that the UPL emission is due to photo-carrier injection from the Mn-doped GaN layer into InGaN/GaN MQWs. Photons convert from 2.54 to 2.99 eV via a single-photon absorption process to exhibit a linear up-conversion photon energy of ~450 meV without applying bias voltage. Therefore, the up-conversion process could be interpreted within the uncomplicated energy level model.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer

ToC Category:
Energy Transfer

Original Manuscript: July 21, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 26, 2011
Published: October 5, 2011

Feng-Wen Huang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang, "Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection," Opt. Express 19, A1211-A1218 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photoni transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  2. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002). [CrossRef]
  3. L. Cuadra, A. Marti, and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films451–452, 593–599 (2004). [CrossRef]
  4. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett.86(1), 013505 (2005). [CrossRef]
  5. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells90(18-19), 3327–3338 (2006). [CrossRef]
  6. A. Martí, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009). [CrossRef]
  7. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), and references therein.
  8. H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, “Photoluminescence up-conversion in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B58(8), R4254–R4257 (1998). [CrossRef]
  9. P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, “Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett.77(6), 812–814 (2000). [CrossRef]
  10. K. J. Russell, I. Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson, and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett.82(18), 2960–2962 (2003). [CrossRef]
  11. M. R. Olson, K. J. Russell, V. Narayanamurti, J. M. Olson, and I. Appelbaum, “Linear photon upconversion of 400 meV in an AlGaInP∕GaInP quantum well heterostructure to visible light at room temperature,” Appl. Phys. Lett.88(16), 161108 (2006). [CrossRef]
  12. C. Tablero, “Survey of intermediate band material candidates,” Solid State Commun.133(2), 97–101 (2005). [CrossRef]
  13. C. Tablero, “Electronic and magnetic properties of ZnS doped with Cr,” Phys. Rev. B74(19), 195203 (2006). [CrossRef]
  14. C. Tablero, “Survey of intermediate band materials based on ZnS and ZnTe semiconductors,” Sol. Energy Mater. Sol. Cells90(5), 588–596 (2006). [CrossRef]
  15. L. Kronik, M. Jain, and J. R. Chelikowsky, “Electronic structure and spin polarization of MnxGa1-xN,” Phys. Rev. B66(4), 041203 (2002). [CrossRef]
  16. R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn,” Appl. Phys. Lett.80(10), 1731–1733 (2002). [CrossRef]
  17. A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys.92(9), 4989–4993 (2002). [CrossRef]
  18. N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett.91(24), 242502 (2007). [CrossRef]
  19. A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry, and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett.90(25), 252503 (2007). [CrossRef]
  20. R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B308–310(1-2), 30–33 (2001). [CrossRef]
  21. P. Bogusławski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N,” Phys. Rev. B72(11), 115208 (2005). [CrossRef]
  22. T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides,” Appl. Phys. Lett.81(27), 5159–5161 (2002). [CrossRef]
  23. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science294(5546), 1488–1495 (2001). [CrossRef] [PubMed]
  24. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000). [CrossRef] [PubMed]
  25. V. I. Litvinov and V. K. Dugaev, “Ferromagnetism in magnetically doped III-V semiconductors,” Phys. Rev. Lett.86(24), 5593–5596 (2001). [CrossRef] [PubMed]
  26. N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett.94(13), 132505 (2009). [CrossRef]
  27. J. K. Sheu, K. H. Chang, and M. L. Lee, “Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN,” Appl. Phys. Lett.92(11), 113512 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited