OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 3 — Feb. 2, 1998
  • pp: 100–109

Noiseless electro-optic processing of optical signals generated with squeezed light

P. K. Lam, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor  »View Author Affiliations

Optics Express, Vol. 2, Issue 3, pp. 100-109 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an elegant way of handling optical signals which are generated using squeezed states of light without losing their improved signal to noise ratio. We do this by amplifying, without significant noise penalty, both signal and noise away from the quantum noise limit into the classical domain. This makes the information robust to losses. Our system achieves a signal transfer coefficient, Ts , close to unity. As a demonstration we amplify a small signal carried by 35% amplitude squeezed light and show that unlike the fragile squeezed input, the signal amplified output is robust to propagation losses. A signal transfer coefficient of Ts = 0.75 is achieved even in the presence of large introduced (86%) downstream losses.

© Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.6570) Quantum optics : Squeezed states

ToC Category:
Focus Issue: Experiments on generation and application of quantum light states

Original Manuscript: November 24, 1997
Published: February 2, 1998

P. Lam, T. Ralph, E. Huntington, D. McClelland, and Hans Bachor, "Noiseless electro-optic processing of optical signals generated with squeezed light," Opt. Express 2, 100-109 (1998)

Sort:  Journal  |  Reset  


  1. Y. Yamamoto, S. Machida, S. Saito, N. Imoto, T. Yanagawa, M. Kitagawa and G. Bjork, "Quantum Mechanical Limit in Optical Precision Measurement and Communication", Prog. Opt. XXVIII, 87 (1990). [CrossRef]
  2. C. Fabre, "Squeezed states of light", Phys. Rep. 219 215 (1992). [CrossRef]
  3. T.C.Ralph, C.C.Harb, H-A.Bachor "Intensity noise of injection locked lasers: quantum theory using linearized input-output method", Phys. Rev. A. 54, 4359 (1996). [CrossRef] [PubMed]
  4. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor and I. Freitag, "Intensity Noise Dependence of Nd:YAG Lasers on their Diode-Laser Pump Source", J. Opt. Soc. Am. B 14,2936 (1997). [CrossRef]
  5. J. H. Shapiro, G. Saplakoglu, S.-T. Ho, P. Kumar, B. E. A. Saleh and M. C. Teich, "Theory of light detection in the presence of feedback", J. Opt. Soc. Am. B 4,1604 (1987). [CrossRef]
  6. M. S. Taubman, H. M. Wiseman, D. E. McClelland and H.-A. Bachor, "Eects of intensity feedback on quantum noise", J. Opt. Soc. Am. B 12, 1792 (1995). [CrossRef]
  7. H. M. Wiseman, M. S. Taubman and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation", Phys. Rev. A 51, 3227 (1995). [CrossRef] [PubMed]
  8. H. P. Yuen, "Generation, Detection and Application of High-IntensityPhoton-Number-Eigenstate Fields", Phys. Rev. Lett. 56, 2176(1986). [CrossRef] [PubMed]
  9. H. A. Haus and J. A. Mullen, "Quantum noise in linear amplifier", Phys. Rev. A 128, 2407 (1962).
  10. C. M. Caves, " Quantum limits on noise in linear amplifiers", Phys. Rev. D 26, 1817 (1982). [CrossRef]
  11. J. A. Levenson, I. Abram, T. Rivera, and P. Fayolle, "Quantum Optical Cloning Amplifier", Phys. Rev. Lett. 70, 267 (1993). [CrossRef] [PubMed]
  12. E. Goobar, A. Karlsson and G. Bjoerk, "Experimental realization of a semiconductor photon number amplifier and a quantum optical tap", Phys. Rev. Lett. 71, 2002 (1993). [CrossRef] [PubMed]
  13. J.-F. Roch, J.-Ph. Poizat, and P. Grangier, "Sub-shot-noise manipulation of light using semiconductor emitters and receivers", Phys. Rev. Lett. 71, 2006 (1993). [CrossRef] [PubMed]
  14. R. C. Dorf, R. H. Bishop, Modern Control Systems, (Addison-Wesley. Reading, Mass. 1995).
  15. A. V. Masalov, A. A. Putilin and M. V. Vasilyev, "Photocurrent noise suppression and optical amplification in negative-feedback opto-electronic loop", Quantum Communications and Measurement, V. P. Belavkin et al. Ed., (Plenum Press, New York 1995) p. 511.
  16. A. V. Masalov, A. A. Putilin and M. V. Vasilyev, "Sub-Poissonian light and photocurrent shot-noise suppression in a closed optoelectronic loop", J. Mod. Opt., 41, 1941 (1994). [CrossRef]
  17. V. N. Konopsky, A. V. Masalov, A. A. Putilin and M. V. Vasilyev, "Optical amplifier and oscillator based on modulator", Coherence and Quantum Optics, VII, Eberly, Mandel and Wolf Ed., (Plenum Press, New York 1996) p. 167.
  18. P. K. Lam, T. C. Ralph, E. H. Huntington, H.-A. Bachor, "Noiseless Signal Amplification using Positive Electro-Optic Feedforward", Phys. Rev. Lett. 79, 1471 (1997). [CrossRef]
  19. A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland and H.-A. Bachor, "Experimental test of modular noise propagation theory for quantum optics", Phys. Rev. A 54, 3400 (1996). [CrossRef] [PubMed]
  20. T. C. Ralph and H.-A. Bachor, "Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier", Opt. Commun. 122, 94 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (18 KB)     
» Media 2: MOV (23 KB)     
» Media 3: MOV (21 KB)     
» Media 4: MOV (16 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited